Araştırma Makalesi
BibTex RIS Kaynak Göster

Semizotunun (Portulaca oleracea L.) bor toksititesine tepkisi

Yıl 2016, Cilt: 31 Sayı: 3, 448 - 455, 24.10.2016
https://doi.org/10.7161/omuanajas.270000

Öz

Bu çalışma, semizotu bitkisinde (Portulaca oleraceae L.) artan bor (B) düzeylerinin etkisini belirlemek için yapılmıştır. İki semizotu türü, Mercan (yaygın bir şekilde yetiştirilen bir tür) ve Yabani (doğada kendiliğinden yetişen bir tür) sera denemesi için kullanılmış ve 0, 5, 10, 25 mg kg-1 B düzeyleri uygulanmıştır. Bor stresi altındaki bitkilerde bitki gelişmesi, toplam klorofil (Chl) ve karotenoid (Car) önemli derecede düşmüştür. Yabani çeşidin toplam Chl ve Car içerikleri Mercan çeşidinden fazla bulunmuştur. Artan B uygulamalarıyla her iki semizotu çeşidinde de, gövde kök oranı (SRR) ve membran geçirgenliği (MP) artarken, oransal su içeriği (RWC) dalgalı bir seyir izlemiştir. Ayrıca, kök ve gövdede bulunan B elementinin içerik ve alımları, kökteki en yüksek B düzeyi hariç, artan B düzeylerine paralel olarak artmıştır. Her iki çeşitte de fosfor (P) ve potasyum (K) alımları artan B düzeyleri ile düşerken, kalsiyum (Ca) alımı bir dalgalanma göstermiştir. Sodyum (Na) alımı Mercan çeşidinde artmış, yabani çeşitte ise düşmüştür. Fosfor ve potasyum alımları Mercan çeşidinde daha fazladır. Oysa kalsiyum ve sodyum alımları yabani çeşitte daha fazladır. Semizotu bitkisinin artan B düzeylerine farklı tepkiler gösterdiği ve Mercan çeşidindeki biokütle üretiminin yabani çeşitten daha fazla olduğu sonucuna varılmıştır.

Kaynakça

  • Alpaslan, M., Gunes, A., 2001. Interactive effects of boron and salinity stress on the growth, membrane permeability, and mineral composition of tomato and cucumber plants. Plant and Soil, 236: 123-28.
  • Ashagre, H., Hamza, I. A. Fita, U., Estifanos, E., 2014. Boron toxicity on seed germination and seedling growth of safflower (Carthamus tinctorius L.). Herald Journal of Agriculture and Food Science Research, 3(1): 1-6.
  • Benlloch, M., Arboleda, F., Barranco, D., Fernandez-Escobar, R., 1991. Response of young olive trees to sodium and boron excess in irrigation water. HortScience, 26(7): 867-870.
  • Brown, P.H., Bellaloui, N., Wimmer, M.A., Bassil, E.S., Ruiz, J., Hu, H., Römheld, V., 2002. Boron in plant biology. Plant Biology, 4(2): 205-223.
  • Carr, C.E., Lindemann, W., Flynn, R., Steiner, R., 2011. Boron fertilization of Chile pepper under greenhouse conditions. Western Nutrient Management Conference, 9: 116-121.
  • Cervilla, L.M., Rosales, M.A., Rubio-Wilhelmi, M.M., Sánchez-Rodríguez, E., Blasco, B., Ríos, J.J., Ruiz, J.M., 2009. Involvement of lignification and membrane permeability in the tomato root response to boron toxicity. Plant Science, 176(4): 545-552.
  • Çikili, Y., Samet H., Dursun, S., 2015. Mutual effects of boron and zinc on peanut (Arachis hypogaea L.) growth and mineral nutrition. Communications in Soil Science and Plant Analysis, 46(5): 641-651.
  • El-Feky, S.S., El-Shintinawy, F.A., Shaker, E.M., Shams El-Din, H.A., 2012. Effect of elevated boron concentrations on the growth and yield of barley (Hordeum vulgare L.) and alleviation of its toxicity using different plant growth modulators. Australian Journal of Crop Science, 6(12): 1687-1695.
  • Eraslan, F., Inal, A., Gunes, A., Alpaslan, M., 2007a. Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae, 113(2): 120-128.
  • Eraslan, F., Inal, A., Gunes, A., Alpaslan, M., 2007b. Boron toxicity alters nitrate reductase activity, proline accumulation, membrane permeability, and mineral constituents of tomato and pepper plants. Journal of Plant Nutrition, 30(6): 981-994.
  • Goldbach, H.E., Wimmer, M.A., 2007. Boron in plants and animals: Is there a role beyond cell‐wall structure? Journal of Plant Nutrition and Soil Science, 170(1): 39-48.
  • Güneş, A., Alpaslan, M., Çikili Y., Özcan, H. 1999. Effect of Zinc on the Alleviation of Boron Toxicity in Tomato. Journal of Plant Nutrition, 22(7): 1061-1068.
  • Gunes, A., Inal, A., Bagci, E.G., 2009. Recovery of bean plants from boron-induced oxidative damage by zinc supply. Russian Journal of Plant Physiology, 56(4): 503-509.
  • Hajiboland, R., Bastani, S., Rad, S.B., 2011. Effect of light intensity on photosynthesis and antioxidant defense in boron deficient tea plants. Acta Biologica Szegediensis, 55(2): 265-272.
  • Hamurcu, M., Demiral, T., Hakkı, E. E., Türkmen, Ö., Gezgin, S., Bell, R.W., 2015. Oxidative stress responses in watermelon (Citrullus lanatus) as influenced by boron toxicity and drought. Žemdirbystė (Agriculture), 102(2): 209-216.
  • Hasnain, A., Mahmood, S., Akhtar, S., Malik S. A., Bashir, N., 2011. Tolerance and toxicity levels of boron in mung bean (Vigna radiata L.) Wilczek) cultivars at early growth stages. Pak. J. Bot, 43(2): 1119-1125.
  • Hu, H., Brown, P.H., 1997. Absorption of boron by plant roots. Plant and Soil, 193(1-2): 49-58.
  • Ismail, A.M., 2003. Response of maize and sorghum to excess boron and salinity. Biologia plantarum, 47(2): 313-316.
  • Karabal, E., Yücel, M., Öktem, H.A., 2003. Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Science, 164(6): 925-933.
  • Kaya, C., Tuna, A.L., Dikilitas, M., Ashraf, M., Koskeroglu, S., Guneri, M., 2009. Supplementary phosphorus can alleviate boron toxicity in tomato. Scientia Horticulturae, 121(3): 284-288.
  • Keleş, Y., Ergün N., Öncel, I., 2011. Antioxidant enzyme activity affected by high boron concentration in sunflower and tomato seedlings. Communications in soil science and plant analysis, 42(2): 173-183.
  • Liu, L., Howe, P., Zhou, Y. F., Xu, Z.Q., Hocart, C., Zhang, R., 2000. Fatty acids and β-carotene in Australian purslane (Portulaca oleracea) varieties. Journal of Chromatography A, 893(1): 207-213.
  • Marschner, H., 1995. Mineral Nutrition of Higher Plants, 2nd ed. Academic Press, New York, USA. pp. 379-396.
  • Matoh, T., 1997. Boron in plant cell walls. Plant and Soil, 193(1-2): 59-70.
  • Mitich, L. W. 1997. Common purslane (Portulaca oleracea). Weed Technology, 11(2): 394-397.
  • Mouritsen, O.G., Jorgensen, K., Honger, T., 1995. Permeability of lipid bilayers near the phase transition. In EA Disalve and SA Simon, eds, Permeability and Stability of Lipid Bilayers. CRC Press, Boca Raton, FL, pp 137-157.
  • Mozafar, A., 1989. Boron effect on mineral nutrients of maize. Agronomy Journal, 81(2): 285-290.
  • Nable, R.O., 1991. Distribution of boron within barley genotypes with differing susceptibilities to boron toxicity 1. Journal of Plant Nutrition, 14(5): 453-461.
  • Nable, R.O., Bañuelos, G.S., Paull, J.G., 1997. Boron toxicity. Plant and Soil, 193(1-2): 181-198.
  • Nable, R.O., Paull, J.G., 1991. Mechanism and genetics of tolerance to boron toxicity in plants. Curr. Topics Plant Biochem. Physiol., 10: 257-273.
  • Nagesh, B. R., Jyothi, M. N., Sharadamma, N., Devaraj, V. R. 2012. Changes in antioxidative and photosynthetic properties system of French bean (Phaseolus vulgaris) to boron toxicity. J. Agric. Biol. Sci, 7: 892-898.
  • Page, A.L., Miller, R.H., Keeney, D.R., 1982. Methods of Soil Analysis, Part-2. Chemical and microbiological properties. Agronomy Monograph No. 9, 2nd Ed., SSSA, Madison WI, USA. pp.199-224.
  • Raven, J.A., 1980. Short‐ and long‐distance transport of boric acid in plants. New Phytologist, 84(2): 231-249.
  • Reid, R.J., Hayes, J.E., Post, A., Stangoulis, J.C.R., Graham, R.D., 2004. A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ., 27(11): 1405-1414.
  • Salinas, R., Cerda, A., Martinez, V., 1986. The interactive effects of boron and macronutrients (P, K, Ca and Mg) on pod yield and chemical composition of pea (Pisum sativum). Journal of horticultural science, 61(3): 343-347.
  • Samet, H., Çıkılı, Y., Dursun, S., 2013. Interactive effects of boron and potassium on the growth and mineral composition of bean (Phaseolus vulgaris L.). Siol-Water Journal, 2(1): 689-696.
  • Simopoulos, A.P., Norman, H.A., Gillaspy J. E., Duke, J.A., 1992. Common purslane: a source of omega-3 fatty acids and antioxidants. Journal of the American College of Nutrition, 11(4): 374-382.
  • Sotiropoulos, T.E., Therios, I. N., Dimassi, K. N., Bosabalidis, A., Kofidis, G., 2002. Nutritional status, growth, CO2 assimilation, and leaf anatomical responses in two kiwifruit species under boron toxicity. Journal of Plant Nutrition, 25(6): 1249-1261.
  • Stiles, A.R., Bautista, D., Atalay, E., Babaoglu M., Terry, N., 2010. Mechanisms of boron tolerance and accumulation in plants: A physiological comparison of the extremely boron-tolerant plant species, Puccinellia distans, with the moderately boron-tolerant Gypsophila arrostil. Environmental Science and Technology, 44(18): 7089-7095.
  • Supanjani, L.K., 2006. Hot pepper response to interactive effects of salinity and boron. Plant Soil Environ., 52(5): 227-233.
  • Tariq, M., Mott, C.J.B., 2006. Effect of applied boron on the accumulation of cations and their ratios to boron in radish (Raphanus sativus L.). Soil & Environment, 25(1): 40-47.
  • Wang, Z.Y., Tang, Y.L., Zhang, F.S., Wang, H., 1999. Effect of boron and low temperature on membrane integrity of cucumber leaves. Journal of Plant Nutrition, 22(3): 543-550.
  • Yan, B., Dai, Q, Liu, X. Huang, S., Wang, Z., 1996. Flooding induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil, 179: 261-268.

Response of purslane (Portulaca oleracea L.) to boron toxicity

Yıl 2016, Cilt: 31 Sayı: 3, 448 - 455, 24.10.2016
https://doi.org/10.7161/omuanajas.270000

Öz

This study was undertaken to determine the effects of increasing boron (B) in purslane (Portulaca oleraceae L.). Two variety of purslane, Mercan (a variety cultivated widely) and Wild (a variety grown in nature spontaneously), were used for glasshouse experiment with the following treatments: 0, 5, 10, 25 mg B kg-1. Plant growth, total chlorophyll (Chl) and carotenoid (Car) reduced significantly in B-stressed plants. Total Chl and Car contents in Wild were greater than in Mercan. While shoot and root ratio (SRR) and membrane permeability (MP) were increased by applied B, relative water content (RWC) showed an indecisive trend in both varieties. Also, the content and uptake of B in shoot and root increased in parallel to increasing B levels, except for the highest B level in root. While uptakes of phosphorus (P) and potassium (K) decreased with increasing B levels, Calcium (Ca) uptake showed an indecisive trend in both varieties. Na uptakes increased in Mercan, whereas it decreased in Wild. The P and K uptakes were greater in Mercan, whereas the Ca and Na uptakes were greater in Wild. It was concluded that purslane showed different responses to increasing B levels and biomass production was greater in Mercan than in Wild.

Kaynakça

  • Alpaslan, M., Gunes, A., 2001. Interactive effects of boron and salinity stress on the growth, membrane permeability, and mineral composition of tomato and cucumber plants. Plant and Soil, 236: 123-28.
  • Ashagre, H., Hamza, I. A. Fita, U., Estifanos, E., 2014. Boron toxicity on seed germination and seedling growth of safflower (Carthamus tinctorius L.). Herald Journal of Agriculture and Food Science Research, 3(1): 1-6.
  • Benlloch, M., Arboleda, F., Barranco, D., Fernandez-Escobar, R., 1991. Response of young olive trees to sodium and boron excess in irrigation water. HortScience, 26(7): 867-870.
  • Brown, P.H., Bellaloui, N., Wimmer, M.A., Bassil, E.S., Ruiz, J., Hu, H., Römheld, V., 2002. Boron in plant biology. Plant Biology, 4(2): 205-223.
  • Carr, C.E., Lindemann, W., Flynn, R., Steiner, R., 2011. Boron fertilization of Chile pepper under greenhouse conditions. Western Nutrient Management Conference, 9: 116-121.
  • Cervilla, L.M., Rosales, M.A., Rubio-Wilhelmi, M.M., Sánchez-Rodríguez, E., Blasco, B., Ríos, J.J., Ruiz, J.M., 2009. Involvement of lignification and membrane permeability in the tomato root response to boron toxicity. Plant Science, 176(4): 545-552.
  • Çikili, Y., Samet H., Dursun, S., 2015. Mutual effects of boron and zinc on peanut (Arachis hypogaea L.) growth and mineral nutrition. Communications in Soil Science and Plant Analysis, 46(5): 641-651.
  • El-Feky, S.S., El-Shintinawy, F.A., Shaker, E.M., Shams El-Din, H.A., 2012. Effect of elevated boron concentrations on the growth and yield of barley (Hordeum vulgare L.) and alleviation of its toxicity using different plant growth modulators. Australian Journal of Crop Science, 6(12): 1687-1695.
  • Eraslan, F., Inal, A., Gunes, A., Alpaslan, M., 2007a. Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae, 113(2): 120-128.
  • Eraslan, F., Inal, A., Gunes, A., Alpaslan, M., 2007b. Boron toxicity alters nitrate reductase activity, proline accumulation, membrane permeability, and mineral constituents of tomato and pepper plants. Journal of Plant Nutrition, 30(6): 981-994.
  • Goldbach, H.E., Wimmer, M.A., 2007. Boron in plants and animals: Is there a role beyond cell‐wall structure? Journal of Plant Nutrition and Soil Science, 170(1): 39-48.
  • Güneş, A., Alpaslan, M., Çikili Y., Özcan, H. 1999. Effect of Zinc on the Alleviation of Boron Toxicity in Tomato. Journal of Plant Nutrition, 22(7): 1061-1068.
  • Gunes, A., Inal, A., Bagci, E.G., 2009. Recovery of bean plants from boron-induced oxidative damage by zinc supply. Russian Journal of Plant Physiology, 56(4): 503-509.
  • Hajiboland, R., Bastani, S., Rad, S.B., 2011. Effect of light intensity on photosynthesis and antioxidant defense in boron deficient tea plants. Acta Biologica Szegediensis, 55(2): 265-272.
  • Hamurcu, M., Demiral, T., Hakkı, E. E., Türkmen, Ö., Gezgin, S., Bell, R.W., 2015. Oxidative stress responses in watermelon (Citrullus lanatus) as influenced by boron toxicity and drought. Žemdirbystė (Agriculture), 102(2): 209-216.
  • Hasnain, A., Mahmood, S., Akhtar, S., Malik S. A., Bashir, N., 2011. Tolerance and toxicity levels of boron in mung bean (Vigna radiata L.) Wilczek) cultivars at early growth stages. Pak. J. Bot, 43(2): 1119-1125.
  • Hu, H., Brown, P.H., 1997. Absorption of boron by plant roots. Plant and Soil, 193(1-2): 49-58.
  • Ismail, A.M., 2003. Response of maize and sorghum to excess boron and salinity. Biologia plantarum, 47(2): 313-316.
  • Karabal, E., Yücel, M., Öktem, H.A., 2003. Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Science, 164(6): 925-933.
  • Kaya, C., Tuna, A.L., Dikilitas, M., Ashraf, M., Koskeroglu, S., Guneri, M., 2009. Supplementary phosphorus can alleviate boron toxicity in tomato. Scientia Horticulturae, 121(3): 284-288.
  • Keleş, Y., Ergün N., Öncel, I., 2011. Antioxidant enzyme activity affected by high boron concentration in sunflower and tomato seedlings. Communications in soil science and plant analysis, 42(2): 173-183.
  • Liu, L., Howe, P., Zhou, Y. F., Xu, Z.Q., Hocart, C., Zhang, R., 2000. Fatty acids and β-carotene in Australian purslane (Portulaca oleracea) varieties. Journal of Chromatography A, 893(1): 207-213.
  • Marschner, H., 1995. Mineral Nutrition of Higher Plants, 2nd ed. Academic Press, New York, USA. pp. 379-396.
  • Matoh, T., 1997. Boron in plant cell walls. Plant and Soil, 193(1-2): 59-70.
  • Mitich, L. W. 1997. Common purslane (Portulaca oleracea). Weed Technology, 11(2): 394-397.
  • Mouritsen, O.G., Jorgensen, K., Honger, T., 1995. Permeability of lipid bilayers near the phase transition. In EA Disalve and SA Simon, eds, Permeability and Stability of Lipid Bilayers. CRC Press, Boca Raton, FL, pp 137-157.
  • Mozafar, A., 1989. Boron effect on mineral nutrients of maize. Agronomy Journal, 81(2): 285-290.
  • Nable, R.O., 1991. Distribution of boron within barley genotypes with differing susceptibilities to boron toxicity 1. Journal of Plant Nutrition, 14(5): 453-461.
  • Nable, R.O., Bañuelos, G.S., Paull, J.G., 1997. Boron toxicity. Plant and Soil, 193(1-2): 181-198.
  • Nable, R.O., Paull, J.G., 1991. Mechanism and genetics of tolerance to boron toxicity in plants. Curr. Topics Plant Biochem. Physiol., 10: 257-273.
  • Nagesh, B. R., Jyothi, M. N., Sharadamma, N., Devaraj, V. R. 2012. Changes in antioxidative and photosynthetic properties system of French bean (Phaseolus vulgaris) to boron toxicity. J. Agric. Biol. Sci, 7: 892-898.
  • Page, A.L., Miller, R.H., Keeney, D.R., 1982. Methods of Soil Analysis, Part-2. Chemical and microbiological properties. Agronomy Monograph No. 9, 2nd Ed., SSSA, Madison WI, USA. pp.199-224.
  • Raven, J.A., 1980. Short‐ and long‐distance transport of boric acid in plants. New Phytologist, 84(2): 231-249.
  • Reid, R.J., Hayes, J.E., Post, A., Stangoulis, J.C.R., Graham, R.D., 2004. A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ., 27(11): 1405-1414.
  • Salinas, R., Cerda, A., Martinez, V., 1986. The interactive effects of boron and macronutrients (P, K, Ca and Mg) on pod yield and chemical composition of pea (Pisum sativum). Journal of horticultural science, 61(3): 343-347.
  • Samet, H., Çıkılı, Y., Dursun, S., 2013. Interactive effects of boron and potassium on the growth and mineral composition of bean (Phaseolus vulgaris L.). Siol-Water Journal, 2(1): 689-696.
  • Simopoulos, A.P., Norman, H.A., Gillaspy J. E., Duke, J.A., 1992. Common purslane: a source of omega-3 fatty acids and antioxidants. Journal of the American College of Nutrition, 11(4): 374-382.
  • Sotiropoulos, T.E., Therios, I. N., Dimassi, K. N., Bosabalidis, A., Kofidis, G., 2002. Nutritional status, growth, CO2 assimilation, and leaf anatomical responses in two kiwifruit species under boron toxicity. Journal of Plant Nutrition, 25(6): 1249-1261.
  • Stiles, A.R., Bautista, D., Atalay, E., Babaoglu M., Terry, N., 2010. Mechanisms of boron tolerance and accumulation in plants: A physiological comparison of the extremely boron-tolerant plant species, Puccinellia distans, with the moderately boron-tolerant Gypsophila arrostil. Environmental Science and Technology, 44(18): 7089-7095.
  • Supanjani, L.K., 2006. Hot pepper response to interactive effects of salinity and boron. Plant Soil Environ., 52(5): 227-233.
  • Tariq, M., Mott, C.J.B., 2006. Effect of applied boron on the accumulation of cations and their ratios to boron in radish (Raphanus sativus L.). Soil & Environment, 25(1): 40-47.
  • Wang, Z.Y., Tang, Y.L., Zhang, F.S., Wang, H., 1999. Effect of boron and low temperature on membrane integrity of cucumber leaves. Journal of Plant Nutrition, 22(3): 543-550.
  • Yan, B., Dai, Q, Liu, X. Huang, S., Wang, Z., 1996. Flooding induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil, 179: 261-268.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Toprak Bilimi ve Bitki Besleme
Yazarlar

Halil Samet Bu kişi benim

Yakup Çıkılı

Yayımlanma Tarihi 24 Ekim 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 31 Sayı: 3

Kaynak Göster

APA Samet, H., & Çıkılı, Y. (2016). Semizotunun (Portulaca oleracea L.) bor toksititesine tepkisi. Anadolu Tarım Bilimleri Dergisi, 31(3), 448-455. https://doi.org/10.7161/omuanajas.270000
Online ISSN: 1308-8769