Araştırma Makalesi
BibTex RIS Kaynak Göster

Selection of anchor pixels by using image filtering approach for internal calibration step of evapotranspiration mapping through energy balance

Yıl 2017, Cilt: 32 Sayı: 3, 330 - 339, 15.10.2017
https://doi.org/10.7161/omuanajas.319335

Öz

Evapotranspiration
(ET) have great importance for calculation of hydrologic water budget in water
resource management and to estimate irrigation water amount in agricultural water
management. In recent years, ET mapping opportunities are gradually
increased by development of satellite technologies.
Almost, models developed for ET (METRIC, SEBAL etc.) are mostly depends on
energy balance which main components are latent heat flux (LE), sensible heat
flux (H), net radiation (Rn) and soil heat flux (G). METRIC and SEBAL are two
important energy balance based models. 
In order to run these models data obtained from satellite images and
meteorological stations should be used together and
one of the most important step is calculation of sensible heat flux (H). In
METRIC and SEBAL models calculation of H contains an internal calibration
process which depends on two selected anchor pixels called hot and cold. Cold
pixel represents a condition of ET at potential level and hot pixel represents
a situation with ET at zero level. Therefore, selection of hot and cold pixels
have an important effect on the accuracy of ET maps. Anchor pixels should be
selected from agricultural areas and for large an area, filtration equations
are required. Main purpose of this study was to develop filtration equations
for facilitating selection of anchor pixels for a current model approach METRIC
thus to improve accuracy of ET maps. This study was carried out for two
separate regions which have sub-humid (Bafra) and semi-arid (Suluova) climate
conditions. Landsat 8 satellite images were used. Equations developed for
filtration purposes were depending on normalized difference vegetation index
(NDVI) and surface temperature (Ts). By using filtration method developed in
this study selection of anchor pixels were achieved correctly and easily. This
method was standardized the anchor pixel selection which could be changed from
one person to other. Application of filtration were improved the correctness of
ET maps and offer an important opportunity to save time.

Kaynakça

  • Allen, R. G and Bastiaansen, W G. M. 2005. Special issue on remote sensing of crop evapotranspiration for large regions. Irrigation of Drainage Systems, 19, 207-210.
  • Allen, R. G. Robison, C. W., Garcia, M., Trezza, R., Tasumi, M., Kjaersgaard J. 2010. ETrF vs NDVI Relationships for Southern Idaho for Rapid Estimation of Evapotranspiration. Report to IDWR.
  • Allen, R. G., Tasumi, M., Morse, A. 2005. Satellıte-Based Evapotranspıratıon by Metrıc and Landsat for Western States Water Management. Presented at the US Bureau of Reclamation Evapotranspiration Workshop Feb 8-10, – Ft. Collins, CO.
  • Allen, R.G., Tasumi, M., Trezza, R. 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)–Model. J. Irrig. Drain. Eng. ASCE 133 (4), 380–394.
  • Allen, R.G., Walter, I.A., Elliott, R., Howell, T., Itenfisu, D., Jensen, M., 2005. The ASCE Standardized Reference Evapotranspiration Equation. Environmental and Water Resources Institute of the American Society of Civil Engineers January, Final Report.
  • Anonim, 2017. www.mgm.gov.tr
  • Bastiaanssen, W. G. M., and Bandara, K. M. P. S. 2001. Evaporative depletion assessments for irrigated watersheds in Sri Lanka. Irrigation Science. 21:1-15.
  • Bastiaanssen, W.G.M., Menenti, R.A., Feddes, Holtslag, A.A.M., 1998a. The surface energy balance algorithm for land (SEBAL). Part 1 formulation. J. Hydrol. 213, 198-298.
  • Bastiaanssen, W.G.M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J. F., Roerink, G. J., Van Der Wal, T., 1998b. A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. Journal of Hydrology 212-213:213-229.
  • Bastiaanssen W.G.M., and Bos M.G. 1999. Irrigation performance indicators based on remotely sensed data: a review of literature. Irrigation and Drainage Systems 13: 291–311.
  • Chávez, J. L., Gowda, P. H., Howell, T. A., Copeland K. S. 2009. Radiometric surface temperature calibration effects on satellite based evapotranspiration estimation. International Journal of Remote Sensing, 30, (9), 2337–2354.
  • Conrad, C., Dech, S. W., Hafeez, M., Lamers, J., Martius, C., Strunz, G., 2007. Mapping and assessing water use in a Central Asian irrigation system by utilizing MODIS remote sensing products. Irrigation and Drainage Systems, 21, (3), 197–218.
  • Elarab, M., 2016. The Application of Unmanned Aerial Vehicle to Precision Agriculture: Chlorophyll, Nitrogen, and Evapotranspiration Estimation. Utah State University, Doctor of Philosophy.
  • Gowda, P. H., Chávez, J. L. Howell, T. A., Marek, T. H., New, L. L. 2008a. Surface Energy Balance Based Evapotranspiration Mapping in the Texas High Plains. Sensors 8(8), 5186-5201; doi:10.3390/s8085186.
  • Gowda, P. H., J.L. Chávez, P.D. Colaizzi, S.R. Evett, T.A. Howell, and J.A. Tolk, 2008b: ET Mapping for agricultural water management: present status and challenges. Irrigation Science J. 26(3): 223-237.
  • Gowda P. H., Howell TA, Paul G., Colaizzi P. D., Marek T. H., 2011. SEBAL for estimating hourly ET fluxes over irrigated and dryland cotton during BEAREX08. World Environmental and Water Resources Congress. ASCE.
  • Hanson R. L. 1991. Evapotranspiration and droughts. In: Paulson RW, Chase EB, Roberts RS, Moody DW, Compilers, National Water Summary 1988-89-hydrologic events and floods and droughts: U.S. Geological Survey Water-Supply Paper 2375, pp 99–104.
  • Hendrickx, J. M. H., Kleissl, J., Vélez, J. D. G., Hong, S., Duque, J. R. F., Vega, D., Ramírez, H. A. M., Ogden, F. L. 2007. Scintillometer networks for calibration and validation of energy balance and soil moisture remote sensing algorithms. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, 65650W, Orlando, Florida, USA, doi:10.1117/12.718124.
  • Howell, T. A., Hatfield, J. L., Yamada, H., Davis, K. R., 1984. Evaluation of cotton canopy tempature to detect crop Water stress. Transactions of the ASAE. 27 (1): 0084-0088. (doi: 10.13031/2013.32740).
  • Idso, S. B., Jackson, P. J., Pinter, J. R., Reginatoi R. J. Hatfield, J. L., 1981. Normalizing the stress degree day parameter for environmental variability. Agricultural Meteorology, 24, 45-55.
  • Idso, S. B., 1982. Non-water-stressed baselines: A key to measuring and interpreting plant water stress. Agricultural Meteorology, 27, (1–2), 59-70.
  • Jackson, R.D., Idso, S.B., Reginato, R.J., Pinter, P.J., 1981. Crop canopy temperature as a crop water stress indicator. Water Resour. Res. 17, 1133–1138.
  • Kamble, B., Kilic, A., Hubbard, K. 2013. Estimating Crop Coefficients Using Remote Sensing-Based Vegetation Index. Remote Sens. 5, 1588-1602, doi:10.3390/rs5041588.
  • Kjaersgaard, J.H., Allen, R.G., Garcia, M., Kramber, W., Trezza, R., 2009. Automated Selection of Anchor Pixels for Landsat based Evapotranspiration Estimation, World Environmental and Water Resources Congress: Great Rivers ASCE, 4400-4410.
  • Mallick, J., Kant, Y., Bharath, B.D. 2008. Estimation of land surface temperature over Delhi using Landsat-7 ETM+ J. Ind. Geophys. Union. Vol.12, No.3, pp.131-140.
  • Pinter Jr., P.J., Reginato, R.J., 1982. A thermal infrared technique formonitoring cotton water stress and scheduling irrigation. Trans. ASAE 25, 1651–1655.
  • Polhamusa, A., Fishera, J.B., Tu, K.P. 2013. What controls the error structure in evapotranspiration models? Agricultural and Forest Meteorology 169:12– 24.
  • Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A., Zhang, C., Collelo, G. D. Nounoua L 1996. A revised land surface parameterization (SiB2) for atmospheric GCMS, Part 1: Model formulation. J Clim 9:676–705.
  • Singh, R. K., and Irmak, A. 2011. Treatment of anchor pixels in the METRIC model for improved estimation of sensible and latent heat fluxes. Hydrological Sciences Journal, 56(5), 895-906.
  • Singh, R. K., Liu, S., Tieszen, L. L., Suyker, A. E., Verma, S. B. 2012. Estimating seasonal evapotranspiration from temporal satellite images. Irrigation Science. Volume 30, Issue 4, pp 303–313.
  • Sobrinoa, J. A. Jime´nez-Mun˜oza, J. C., Paolinib, L. 2004. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment 90 434–440.
  • Tagem, 2016. Türkiye’de Sulanan Bitkilerin Bitki Su Tüketim Rehberi. Ankara.
  • Tasumi, M., Allen, R. G., Trezza, R. 2008. At-Surface Reflectance and Albedo from Satellite for Operational Calculation of Land Surface Energy Balance. Journal of Irrigation And Drainage Engineering, 1084-0699 13:2(51).
  • Tasumı, M., Trezza, R., Allen, R. G., Wrıght, J. L. 2005. Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S. Irrigation and Drainage Systems 19: 355–376.
  • Trezza, R. 2006. Estimation Of Evapotranspiration From Satellite‐Based Surface Energy Balance Models For Water Management In The Rio Guarico Irrigation System, Venezuela, AIP Conference Proceedings 852, 162; doi: http://dx.doi.org/10.1063/1.2349340.

Enerji dengesine dayalı evapotranspirasyon haritalamada içsel kalibrasyon için temel hücrelerin görüntü filtreleme yaklaşımı ile seçilmesi

Yıl 2017, Cilt: 32 Sayı: 3, 330 - 339, 15.10.2017
https://doi.org/10.7161/omuanajas.319335

Öz

Evapotranspirasyon (ET) haritalama çalışmaları,
su kaynakları yönetiminde hidrolojik su bütçelerinin hazırlanması ve sulu tarım
alanlarında kullanılan su miktarlarının tahmin edilmesi gibi konularda büyük
öneme sahiptir. Son yıllarda gelişen uydu teknolojileri sayesinde ET haritalama
olanakları giderek artmaktadır. ET haritalarının hazırlanması amacıyla geliştirilmiş
modellerin hemen hepsi, örneğin evapotranspirasyonun haritalanmasında yüksek
çözünürlük ve içsel kalibrasyon
modeli (METRIC) ve
arazi için yüzey enerji dengesi algoritması (SEBAL), temel
bileşenleri gizli ısı akısı (LE), hissedilebilir ısı akısı (H), net radyasyon
(Rn) ve toprak ısı akısı (G) olan enerji dengesine dayanmaktadır. Uydu
görüntülerinden elde edilen veriler ve meteorolojik verilerin bir arada
kullanıldığı bu modellerde en önemli aşamalardan birisi hissedilebilir ısı
akısı (H) hesaplamasıdır. METRIC ve SEBAL modellerinde H hesabı bir içsel
kalibrasyon işlemi içermektedir. Bu kalibrasyon çalışma alanından seçilen soğuk
ve sıcak hücre olarak adlandırılan iki uç koşula dayanmaktadır. Soğuk hücre,
ET’ nin potansiyel düzeyde olduğu ve sıcak hücre ET’ nin en az düzeyde olduğu
koşulları temsil etmektedir. Bu nedenle soğuk ve sıcak hücrenin seçilmesi, elde
edilen ET haritasının doğruluğu üzerinde önemli bir etkiye sahiptir. Söz konusu
hücrelerin tarım alanlarından seçilmesi gerekmektedir ve çalışma sahası büyük
olduğunda çeşitli filtreleme eşitliklerine ihtiyaç duyulmaktadır. Bu çalışmanın
amacı METRIC modelinde soğuk ve sıcak hücrelerin seçimini kolaylaştıracak ve böylece
ET haritalarının doğruluğunu arttıracak filtreleme yöntemlerinin geliştirilmesi
ve uygulanmasıdır. Bu çalışma yarı nemli (Bafra) ve yarı kurak (Suluova) iklim
özelliklerine sahip iki ayrı bölge için yürütülmüştür.   Landsat 8 uydu görüntüleri kullanılmıştır. Filtreleme
amacıyla geliştirilen eşitlikler Normalize edilmiş vejetatif değişim indeksi
(NDVI) ve yüzey sıcaklığına (Ts) dayandırılmıştır. Geliştirilen filtreleme
yöntemi ile soğuk ve sıcak hücre seçimi başarılı ve kolay bir biçimde
gerçekleştirilmiştir. Filtreleme uygulanması, bir kişinden diğerine
değişebilecek soğuk ve sıcak hücre seçimine belli bir standart
getirmiştir.  Filtreleme uygulaması ile
soğuk ve sıcak hücre seçimi ET haritalamada doğruluğu arttırmış ve önemli
düzeyde zaman kazandırmıştır.

Kaynakça

  • Allen, R. G and Bastiaansen, W G. M. 2005. Special issue on remote sensing of crop evapotranspiration for large regions. Irrigation of Drainage Systems, 19, 207-210.
  • Allen, R. G. Robison, C. W., Garcia, M., Trezza, R., Tasumi, M., Kjaersgaard J. 2010. ETrF vs NDVI Relationships for Southern Idaho for Rapid Estimation of Evapotranspiration. Report to IDWR.
  • Allen, R. G., Tasumi, M., Morse, A. 2005. Satellıte-Based Evapotranspıratıon by Metrıc and Landsat for Western States Water Management. Presented at the US Bureau of Reclamation Evapotranspiration Workshop Feb 8-10, – Ft. Collins, CO.
  • Allen, R.G., Tasumi, M., Trezza, R. 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)–Model. J. Irrig. Drain. Eng. ASCE 133 (4), 380–394.
  • Allen, R.G., Walter, I.A., Elliott, R., Howell, T., Itenfisu, D., Jensen, M., 2005. The ASCE Standardized Reference Evapotranspiration Equation. Environmental and Water Resources Institute of the American Society of Civil Engineers January, Final Report.
  • Anonim, 2017. www.mgm.gov.tr
  • Bastiaanssen, W. G. M., and Bandara, K. M. P. S. 2001. Evaporative depletion assessments for irrigated watersheds in Sri Lanka. Irrigation Science. 21:1-15.
  • Bastiaanssen, W.G.M., Menenti, R.A., Feddes, Holtslag, A.A.M., 1998a. The surface energy balance algorithm for land (SEBAL). Part 1 formulation. J. Hydrol. 213, 198-298.
  • Bastiaanssen, W.G.M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J. F., Roerink, G. J., Van Der Wal, T., 1998b. A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. Journal of Hydrology 212-213:213-229.
  • Bastiaanssen W.G.M., and Bos M.G. 1999. Irrigation performance indicators based on remotely sensed data: a review of literature. Irrigation and Drainage Systems 13: 291–311.
  • Chávez, J. L., Gowda, P. H., Howell, T. A., Copeland K. S. 2009. Radiometric surface temperature calibration effects on satellite based evapotranspiration estimation. International Journal of Remote Sensing, 30, (9), 2337–2354.
  • Conrad, C., Dech, S. W., Hafeez, M., Lamers, J., Martius, C., Strunz, G., 2007. Mapping and assessing water use in a Central Asian irrigation system by utilizing MODIS remote sensing products. Irrigation and Drainage Systems, 21, (3), 197–218.
  • Elarab, M., 2016. The Application of Unmanned Aerial Vehicle to Precision Agriculture: Chlorophyll, Nitrogen, and Evapotranspiration Estimation. Utah State University, Doctor of Philosophy.
  • Gowda, P. H., Chávez, J. L. Howell, T. A., Marek, T. H., New, L. L. 2008a. Surface Energy Balance Based Evapotranspiration Mapping in the Texas High Plains. Sensors 8(8), 5186-5201; doi:10.3390/s8085186.
  • Gowda, P. H., J.L. Chávez, P.D. Colaizzi, S.R. Evett, T.A. Howell, and J.A. Tolk, 2008b: ET Mapping for agricultural water management: present status and challenges. Irrigation Science J. 26(3): 223-237.
  • Gowda P. H., Howell TA, Paul G., Colaizzi P. D., Marek T. H., 2011. SEBAL for estimating hourly ET fluxes over irrigated and dryland cotton during BEAREX08. World Environmental and Water Resources Congress. ASCE.
  • Hanson R. L. 1991. Evapotranspiration and droughts. In: Paulson RW, Chase EB, Roberts RS, Moody DW, Compilers, National Water Summary 1988-89-hydrologic events and floods and droughts: U.S. Geological Survey Water-Supply Paper 2375, pp 99–104.
  • Hendrickx, J. M. H., Kleissl, J., Vélez, J. D. G., Hong, S., Duque, J. R. F., Vega, D., Ramírez, H. A. M., Ogden, F. L. 2007. Scintillometer networks for calibration and validation of energy balance and soil moisture remote sensing algorithms. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, 65650W, Orlando, Florida, USA, doi:10.1117/12.718124.
  • Howell, T. A., Hatfield, J. L., Yamada, H., Davis, K. R., 1984. Evaluation of cotton canopy tempature to detect crop Water stress. Transactions of the ASAE. 27 (1): 0084-0088. (doi: 10.13031/2013.32740).
  • Idso, S. B., Jackson, P. J., Pinter, J. R., Reginatoi R. J. Hatfield, J. L., 1981. Normalizing the stress degree day parameter for environmental variability. Agricultural Meteorology, 24, 45-55.
  • Idso, S. B., 1982. Non-water-stressed baselines: A key to measuring and interpreting plant water stress. Agricultural Meteorology, 27, (1–2), 59-70.
  • Jackson, R.D., Idso, S.B., Reginato, R.J., Pinter, P.J., 1981. Crop canopy temperature as a crop water stress indicator. Water Resour. Res. 17, 1133–1138.
  • Kamble, B., Kilic, A., Hubbard, K. 2013. Estimating Crop Coefficients Using Remote Sensing-Based Vegetation Index. Remote Sens. 5, 1588-1602, doi:10.3390/rs5041588.
  • Kjaersgaard, J.H., Allen, R.G., Garcia, M., Kramber, W., Trezza, R., 2009. Automated Selection of Anchor Pixels for Landsat based Evapotranspiration Estimation, World Environmental and Water Resources Congress: Great Rivers ASCE, 4400-4410.
  • Mallick, J., Kant, Y., Bharath, B.D. 2008. Estimation of land surface temperature over Delhi using Landsat-7 ETM+ J. Ind. Geophys. Union. Vol.12, No.3, pp.131-140.
  • Pinter Jr., P.J., Reginato, R.J., 1982. A thermal infrared technique formonitoring cotton water stress and scheduling irrigation. Trans. ASAE 25, 1651–1655.
  • Polhamusa, A., Fishera, J.B., Tu, K.P. 2013. What controls the error structure in evapotranspiration models? Agricultural and Forest Meteorology 169:12– 24.
  • Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A., Zhang, C., Collelo, G. D. Nounoua L 1996. A revised land surface parameterization (SiB2) for atmospheric GCMS, Part 1: Model formulation. J Clim 9:676–705.
  • Singh, R. K., and Irmak, A. 2011. Treatment of anchor pixels in the METRIC model for improved estimation of sensible and latent heat fluxes. Hydrological Sciences Journal, 56(5), 895-906.
  • Singh, R. K., Liu, S., Tieszen, L. L., Suyker, A. E., Verma, S. B. 2012. Estimating seasonal evapotranspiration from temporal satellite images. Irrigation Science. Volume 30, Issue 4, pp 303–313.
  • Sobrinoa, J. A. Jime´nez-Mun˜oza, J. C., Paolinib, L. 2004. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment 90 434–440.
  • Tagem, 2016. Türkiye’de Sulanan Bitkilerin Bitki Su Tüketim Rehberi. Ankara.
  • Tasumi, M., Allen, R. G., Trezza, R. 2008. At-Surface Reflectance and Albedo from Satellite for Operational Calculation of Land Surface Energy Balance. Journal of Irrigation And Drainage Engineering, 1084-0699 13:2(51).
  • Tasumı, M., Trezza, R., Allen, R. G., Wrıght, J. L. 2005. Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S. Irrigation and Drainage Systems 19: 355–376.
  • Trezza, R. 2006. Estimation Of Evapotranspiration From Satellite‐Based Surface Energy Balance Models For Water Management In The Rio Guarico Irrigation System, Venezuela, AIP Conference Proceedings 852, 162; doi: http://dx.doi.org/10.1063/1.2349340.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Bölüm Tarımsal Yapılar ve Sulama
Yazarlar

Sakine Çetin

Eyüp Selim Köksal

Emre Tunca

Yayımlanma Tarihi 15 Ekim 2017
Kabul Tarihi 18 Eylül 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 32 Sayı: 3

Kaynak Göster

APA Çetin, S., Köksal, E. S., & Tunca, E. (2017). Enerji dengesine dayalı evapotranspirasyon haritalamada içsel kalibrasyon için temel hücrelerin görüntü filtreleme yaklaşımı ile seçilmesi. Anadolu Tarım Bilimleri Dergisi, 32(3), 330-339. https://doi.org/10.7161/omuanajas.319335
Online ISSN: 1308-8769