Research Article
BibTex RIS Cite

Yarı Humid Ekolojik Koşullar Altında Oluşmuş Bazı Vertisol Alt Grup Toprakların Profillerinde Isı Akışının Belirlenmesi

Year 2020, Volume: 35 Issue: 2, 198 - 207, 15.06.2020
https://doi.org/10.7161/omuanajas.690151

Abstract

Toprakta ısı akışının değerlendirilmesi, toprağın sıcaklık rejiminin amenajmanı, toprakta depolanan ısı miktarının belirlenmesi ve toprak sıcaklığının modellenmesi için gereklidir. Bu araştırmada, yarı humid ekolojik koşullar altında oluşmuş bazı Vertisol alt grup toprakların profillerinde ısı akışının belirlenmesi amaçlanmıştır. Vertisol ordosuna ait farklı toprak profilinde (Typic Calciustert, Chromic Hapluster, Typic Haplustert) hesaplanan hacimsel ısı kapasitesi 2.173∙106 J m-3 oC-1 ile 2.307∙106 J m-3 oC-1 arasında ve ısı iletkenliği katsayısı ise 12.412 watt m-1 oC-1 ile 21.404 watt m-1 oC-1 arasında değişmektedir. Toprak horizonlarında hacim ağırlığının ve hacimsel nem içeriğinin çok fazla değişkenlik göstermemesi, hacimsel ısı kapasitesinin dar aralıkta değişimine neden olmaktadır. Isı akışı, Typic Calciustert toprak profilinin Ap, Bss 2C horizonlarında 43.892 watt m-2, 26.424 watt m-2, 10.284 watt m-2; Chromic Hapluster profilinin A, Bss1, Bss2 horizonlarında 43.910 watt m-2, 22.665 watt m-2, 7.629 watt m-2; Typic Haplustert profilinin Ap, Bss1, Bss2 horizonlarında ise sırasıyla 35.958 watt m-2, 14.770 watt m-2, 7.530 watt m-2 olarak belirlenmiştir. Horizonlardaki ortalama ve maksimum sıcaklık değerlerine ait farkın pozitif olması, ısı akışının profillerde aşağı yönde gerçekleşmesine neden olmaktadır. Toprakların alt horizonlarına doğru ısısal yayınım katsayılarının genelde artmasına rağmen, ısı akışı değerlerinin azaldığı belirlenmiştir. Kil birikiminin artışına bağlı olarak toplam boşluk miktarının artması, hacimsel ısı kapasitesi ve ısı akışı değerlerinin azalmasına neden olmaktadır.

References

  • Agam N, Berliner PR, Zangvil A, Ben-Dor E (2004). Soil water evaporationduring the dry season in an arid zone. Journal of Geophysical Research, 109 (D16103).
  • Agam N, Kustas, WP, Evett SR, Colaizzi PD, Cosh M, McKee LG (2012). Soilheat flux variability influenced by row direction in irrigated cotton. Advances Water in Resources, 50: 20–30.
  • Arias-Penas, D., Castro-Garcia, M.P., Rey-Ronco, M.A., Alonso-Sanchez, T., 2015. Determining the thermal diffusivity of the ground based on subsoiltemperatures. Preliminary results of an experimental geothermalborehole study Q-THERMIE-UNIOVI. Geothermics, 54: 35–42.
  • Blake, G.R., Hartge, K.H., 1986. Bulk Density and Particle Denstity. In: Methods of Soil Analysis, Part I, Phsical and mineralogical Methods. Pp: 363-381. ASA and SSSA Agronomy Monograph no 9(2nd ed), Madison.
  • Bouyoucous, G.J., 1951. A Recalibration of Hydrometer for Making Mechanical Analysis of Soils. Agronomy Journal. 43: 9.
  • Brys, K., Brys, T., Sayegh, M.A., Ojrzynska, H., 2020. Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pump. Renewable Energy, 146: 1846-1866.
  • Chang, M., Liao, W., Wang, X., Zhang, Q., Chen, W., Wu, Z., Hu, Z., 2020. An optimal ensemble of the Noah-MP land surface model for simulating surface heat fluxes over a typical subtropical forest in South China. Agricultural and Forest Meteorology, 281: 107815.
  • Colaizzi PD, Evett SR, Agam N, Schwartz RC, Kustas WP (2016). Soil heat flux calculation for sunlit and shaded surfaces under rowcrops: 1. Model development and sensitivity analysis. Agricultural and Forest Meteorology, 216: 115–128.
  • Correia, A., Vieira, G., Ramos, M., 2012. Thermal conductivity and thermal diffusivity of cores from a 26 meter deep borehole drilled in Livingston Island, Maritime Antarctic. Geomorphology, 155(156): 7–11.
  • Dengiz O, Ekberli İ (2017). Bazı vertisol alt grup topraklarının fizikokimyasal ve ısısal özelliklerinin incelenmesi. Akademik Ziraat Dergisi, 6(1): 45-52.
  • Dinç, U., Şenol, S., Kapur, S., Cangir, C., Atalay, İ., 2001. Türkiye Toprakları. Ç.Ü. Ziraat Fakültesi Genel Yayın No: 51. Ders Kitapları Yayın No: A-12. Adana.
  • Dinç, U., Şenol, S., Sarı, M., Yesilsoy, Ş., Kaya, Z., Özbek, H., Sayın, M., Çolak, A.k., Yeğingil, I., 1986. Harran Ovası Toprakları. Güneydoğu Anadolu Projesi, Tarımsal Kalkınma Simpozyumu, Ankara.
  • Ekberli, İ., Dengiz, O., 2016. Bazı inceptisol ve entisol alt grup topraklarının fizikokimyasal özellikleriyle ısısal yayınım katsayısı arasındaki regresyon ilişkilerin belirlenmesi. Toprak Su Dergisi, 5(2): 1-10.
  • Ekberli İ, Gülser C (2014). Estimatıon of soil temperature by heat conductivity equation. Vestnik Bashkir State Agrarian University (Вестник Башкирского Госуд арственного Аграрного Университета), 2 (30):12-15.
  • Ekberli, İ., Gülser, C., 2015. İki boyutlu ısı iletkenliği denklemine bağlı olarak toprak sıcaklığının matematiksel modellenmesi. Anadolu Tarım Bilimleri Dergisi, 30(3): 287-291.
  • Ekberli İ, Gülser C, Mamedov A (2015). Toprakta bir boyutlu ısı iletkenlik denkleminin incelenmesinde benzerlik teorisinin uygulanması. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 10(2): 69-79.
  • Ekberli, İ., Sarılar, Y., 2015. Toprak sıcaklığının profil boyunca sönme derinliğinin ve gecikme zamanının belirlenmesi. Ege Üniversitesi Ziraat Fakültesi Dergisi., 52 (2):219-225.
  • Evett SR, Agam N, Kustas WP, Colaizzi PD, Schwartz RC (2012). Soil profilemethod for soil thermal diffusivity, conductivity, and heat flux: comparison tosoil heat flux plates. Advances Water in Resources, 50: 41–54.
  • Florentin A, Agam N (2017). Estimating non-rainfall-water-inputs-derived latent heat flux with turbulence-based methods. Agricultural and Forest Meteorology, 247: 533–540.
  • Fourier JBJ (1822). Théorie analytique de la chaleur (The Analytical Theory of Heat). Paris, 676 p.
  • Garratti, J.R., 1994. The Atmospheric Boundary Layer. Cambridge University Press, 314 p.
  • Geiger, R., Aron, R.H., Todhunter, P., 2003. The Climate Near the Ground (6-th Edit). Rowman & Littlefield Publishers, Oxford, 584 p.
  • Gülser, C., Ekberli, İ., 2019. Toprak sıcaklığının tahmininde ısı taşınım denklemi ve pedotransfer fonksiyonun karşılaştırılması. Toprak Bilimi ve Bitki Besleme Dergisi, 7(2): 158-166.
  • Gülser, C., Ekberli, İ, Mamedov, A., 2019. Toprak sıcaklığının yüzey ısı akışına bağlı olarak değişimi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29(1): 1-9.
  • Gülser, C., Ekberli, İ., Mamedov, A., Özdemir, N., 2018. Faz değişimine bağlı olarak ısı iletkenliği denkleminin incelenmesi ve toprak neminin ısısal yayınıma etkisi. Anadolu Tarım Bilimleri Dergisi, 33(3): 261-269.
  • Hanks RJ, Ashcroft GJ (1980). Applied soil physics. Soil water and temperature applications. Springer-Verlag Berlin Heidelberg, pp. 125-144.
  • Hedayati-Dezfooli, M., Leong, W.H., 2019. An experimental study of coupled heat and moisture transfer in soils at high temperature conditions for a medium coarse soil. International Journal of Heat and Mass Transfer, 137: 372-389.
  • Heusinkveld, B.G., Jacobs, A.F.G., Holtslag, A.A.M., Berkowicz, S.M., 2004. Surface energy balance closure in an arid region: role of soil heat flux, Agricultural and Forest Meteorology, 122: 21-37.
  • Hilel D (2004). Introduction to environmental soil physics. Elsevier Academic Press, USA, pp. 215-233. Iden, S.C., Blocher, J.R., Diamantopoulos, E.D., Peters, A., Durner, W., 2019. Numerical test of the laboratory evaporation method using coupled water, vapor and heat flow modelling. Journal of Hydrology, 570: 574-583.
  • İsachenko VP, Osipova VA, Sukomel AS. 1981. Heat transfer (in Russian). Energoizdat Press, Moscow, 417 p. Jackson, M.L., 1958. Soil Chemical Analysis. Prentice Hall Inc., Englewood Cliffs, NJ, 498 p.
  • Ji, X.B., Kang, E.S., Zhao, W.Z., Zhang, Z.H., Jin, B.W., 2009. Simulation of heat and water transfer in a surface irrigated, cropped sandy soil. Agricultural Water Management, 96: 1010-1020.
  • Kader, M.A., Nakamura, K., Senge, M., Mojid, M.A., Kawashima, S., 2019. Numerical simulation of water- and heat-flow regimes of mulched soil in rain-fed soybean field in central Japan. Soil & Tillage Research, 191: 142-155.
  • Kreith, F., Black, W.Z., 1983. Bazic Heat Transfer (in Russian). Press Mir, Moscow, 512 p. Kustas, W.P., Prueger, J.H., Hatfield, J.L., Ramalingam, K., Hipps, L.E., 2000.Variability in soil heat flux from a mesquite dune site. Agricultural and Forest Meteorology, 103: 249–264.
  • Li Y, Kustas WP, Huang C, Kool D, Haghighi E (2018). Evaluation of soil resistance formulations for estimates of sensible heat flux in a desert vineyard. Agricultural and Forest Meteorology, 260–261: 255–261.
  • Luikov AV (1967). Theory of thermal conductivity (in Russian). Vysshaya Shkola Press, Moscow, 599 p.
  • Luikov AV, Mikhailov YuA (1965). Theory of energy and mass transfer. Pergamon Press, Oxford, England, 392 p.
  • Lu S, Wang H, Meng P, Zhang J, Zhang X (2018). Determination of soil ground heat flux through heat pulse and plate methods: Effects of subsurface latent heat on surface energy balance closure. Agricultural and Forest Meteorology, 260–261: 176–182.
  • Ochsner TE, Sauer TJ, Horton R (2006). Field tests of the soil heat flux plate method and some alternatives. Agronomy Journal, 98 (4): 1005–1014.
  • Peng X, Heitman J, Horton R, Ren T (2015). Field evaluation and improvement of the plate method for measuring soil heat flux density. Agricultural and Forest Meteorology, 214-215: 341–349.
  • Richards, L.A. (Editor), 1954. Diagnosis and Improvement of Saline and Alkaline Soils. United States Department of Agriculture. Agriculture Handbook No. 60, 159 p.
  • Sauer TJ, Horton R (2005). Soil heat flux. In: Hatfield, J.L., Baker, J.M. (Eds.), Micrometeorology in Agricultural Systems. Agronomy Monograph No. 47. American Society of Agronomy, Madison, WI, pp. 131–154.
  • Shao C, Chen J, Li L, Xu W, Chen S, Gwen T, Xu J, Zhang W (2008). Spatialvariability in soil heat flux at three Inner Mongolia steppe ecosystems. Agricultural and Forest Meteorology, 148: 1433–1443.
  • Soil Survey Staff., 1992. Procedures for collecting soil samples and methods of analysis for soil survey. Soil Surv. Invest. Rep. I. U.S. Gov. Print. Office, Washington D.C. USA.
  • Sterling, A.T., Jackson, R.D., 1986. Temperature. In: Klute, A. (Ed.), Methods of Soil Analysis Part 1. Physical and Mineralogical Methods. Agronomy Monograph No: 9, ASA, SSSA, Madison WI.
  • Stull, R.B., 1988. An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 p.
  • Trombotto, D., Borzotta, E., 2009. Indicators of present global warming through changes in active layer-thickness, estimation of thermal diffusivity and geomorphological observations in the Morenas Coloradas rockglacier, Central Andes of Mendoza, Argentina. Cold Regions Science and Technology, 55: 321–330.
  • Vogel, T., Dohnal, M., Votrubova, J., 2011. Modeling heat fluxes in macroporous soil under sparse young forest of temperate humid climate. Journal of Hydrology, 402: 367-376.
  • Yao, Y., Zhang, Y., Liu, Q., Liu, S., Jia, K., Zhang, X., Xu, Z., Xu, T., Chen, J., Fisher, J.B., 2019. Evaluation of a satellite-derived model parameterized by three soil moisture constraints to estimate terrestrial latent heat flux in the Heihe River basin of Northwest China. Science of the Total Environment, 695: 133787.
  • Zhao, Y., Peth, S., Horn, R., Krummelbein, J., Ketzer, B., Gao, Y., Doerner, J., Bernhofer, C., Peng, X., 2010. Modeling grazing effects on coupled water and heat fluxes in Inner Mongolia grassland. Soil & Tillage Research, 109: 75-86.

Determinatıon of Heat Flow in Profiles of Some Vertisol Subgroup Soils Formed Under Semi-humid Ecological Conditions

Year 2020, Volume: 35 Issue: 2, 198 - 207, 15.06.2020
https://doi.org/10.7161/omuanajas.690151

Abstract

The evaluation of heat flow in soil is necessary for the management of soil temperature regime, determining the amount of heat stored in soil, and modeling soil temperature. In this study, the volumetric heat capacity values calculated for horizons of different soil profiles (Typic Calciustert, Chromic Hapluster, Typic Haplustert) belong to Vertisol order varied between 2.173∙106 J m-3 oC-1 and 2.307∙106 J m-3 oC-1, and the thermal conductivity coefficient values varied between 12.412watt m-1 oC-1 and 21.404 watt m-1 oC-1. The volumetric heat capacity changed in a narrow range due to small variation in bulk density and volumetric moisture content values in soil horizons. Heat flow values were determined as 43.892 watt m-2, 26.424 watt m-2, 10.284 watt m-2 in Ap, Bss 2C horizons of Typical Calciustert profile; 43,910 watt m-2, 22,665 watt m-2, 7,629 watt m-2 in A, Bss1, Bss2 horizons of Chromic Hapluster profile and 35.958 watt m-2, 14.770 watt m-2, 7.530 watt m-2 in Ap, Bss1, Bss2 horizons of Typic Haplustert profile, respectively. The positive difference between the average and the maximum temperature values in the horizons causes downward heat flow in the soil profiles. Although the heat diffusivity coefficients increased towards the lower horizons of soils, it was determined that the heat flow values decreased. Increase in the total porosity due to increase in clay accumulation causes to decreases in volumetric heat capacity and heat flow values.

References

  • Agam N, Berliner PR, Zangvil A, Ben-Dor E (2004). Soil water evaporationduring the dry season in an arid zone. Journal of Geophysical Research, 109 (D16103).
  • Agam N, Kustas, WP, Evett SR, Colaizzi PD, Cosh M, McKee LG (2012). Soilheat flux variability influenced by row direction in irrigated cotton. Advances Water in Resources, 50: 20–30.
  • Arias-Penas, D., Castro-Garcia, M.P., Rey-Ronco, M.A., Alonso-Sanchez, T., 2015. Determining the thermal diffusivity of the ground based on subsoiltemperatures. Preliminary results of an experimental geothermalborehole study Q-THERMIE-UNIOVI. Geothermics, 54: 35–42.
  • Blake, G.R., Hartge, K.H., 1986. Bulk Density and Particle Denstity. In: Methods of Soil Analysis, Part I, Phsical and mineralogical Methods. Pp: 363-381. ASA and SSSA Agronomy Monograph no 9(2nd ed), Madison.
  • Bouyoucous, G.J., 1951. A Recalibration of Hydrometer for Making Mechanical Analysis of Soils. Agronomy Journal. 43: 9.
  • Brys, K., Brys, T., Sayegh, M.A., Ojrzynska, H., 2020. Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pump. Renewable Energy, 146: 1846-1866.
  • Chang, M., Liao, W., Wang, X., Zhang, Q., Chen, W., Wu, Z., Hu, Z., 2020. An optimal ensemble of the Noah-MP land surface model for simulating surface heat fluxes over a typical subtropical forest in South China. Agricultural and Forest Meteorology, 281: 107815.
  • Colaizzi PD, Evett SR, Agam N, Schwartz RC, Kustas WP (2016). Soil heat flux calculation for sunlit and shaded surfaces under rowcrops: 1. Model development and sensitivity analysis. Agricultural and Forest Meteorology, 216: 115–128.
  • Correia, A., Vieira, G., Ramos, M., 2012. Thermal conductivity and thermal diffusivity of cores from a 26 meter deep borehole drilled in Livingston Island, Maritime Antarctic. Geomorphology, 155(156): 7–11.
  • Dengiz O, Ekberli İ (2017). Bazı vertisol alt grup topraklarının fizikokimyasal ve ısısal özelliklerinin incelenmesi. Akademik Ziraat Dergisi, 6(1): 45-52.
  • Dinç, U., Şenol, S., Kapur, S., Cangir, C., Atalay, İ., 2001. Türkiye Toprakları. Ç.Ü. Ziraat Fakültesi Genel Yayın No: 51. Ders Kitapları Yayın No: A-12. Adana.
  • Dinç, U., Şenol, S., Sarı, M., Yesilsoy, Ş., Kaya, Z., Özbek, H., Sayın, M., Çolak, A.k., Yeğingil, I., 1986. Harran Ovası Toprakları. Güneydoğu Anadolu Projesi, Tarımsal Kalkınma Simpozyumu, Ankara.
  • Ekberli, İ., Dengiz, O., 2016. Bazı inceptisol ve entisol alt grup topraklarının fizikokimyasal özellikleriyle ısısal yayınım katsayısı arasındaki regresyon ilişkilerin belirlenmesi. Toprak Su Dergisi, 5(2): 1-10.
  • Ekberli İ, Gülser C (2014). Estimatıon of soil temperature by heat conductivity equation. Vestnik Bashkir State Agrarian University (Вестник Башкирского Госуд арственного Аграрного Университета), 2 (30):12-15.
  • Ekberli, İ., Gülser, C., 2015. İki boyutlu ısı iletkenliği denklemine bağlı olarak toprak sıcaklığının matematiksel modellenmesi. Anadolu Tarım Bilimleri Dergisi, 30(3): 287-291.
  • Ekberli İ, Gülser C, Mamedov A (2015). Toprakta bir boyutlu ısı iletkenlik denkleminin incelenmesinde benzerlik teorisinin uygulanması. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 10(2): 69-79.
  • Ekberli, İ., Sarılar, Y., 2015. Toprak sıcaklığının profil boyunca sönme derinliğinin ve gecikme zamanının belirlenmesi. Ege Üniversitesi Ziraat Fakültesi Dergisi., 52 (2):219-225.
  • Evett SR, Agam N, Kustas WP, Colaizzi PD, Schwartz RC (2012). Soil profilemethod for soil thermal diffusivity, conductivity, and heat flux: comparison tosoil heat flux plates. Advances Water in Resources, 50: 41–54.
  • Florentin A, Agam N (2017). Estimating non-rainfall-water-inputs-derived latent heat flux with turbulence-based methods. Agricultural and Forest Meteorology, 247: 533–540.
  • Fourier JBJ (1822). Théorie analytique de la chaleur (The Analytical Theory of Heat). Paris, 676 p.
  • Garratti, J.R., 1994. The Atmospheric Boundary Layer. Cambridge University Press, 314 p.
  • Geiger, R., Aron, R.H., Todhunter, P., 2003. The Climate Near the Ground (6-th Edit). Rowman & Littlefield Publishers, Oxford, 584 p.
  • Gülser, C., Ekberli, İ., 2019. Toprak sıcaklığının tahmininde ısı taşınım denklemi ve pedotransfer fonksiyonun karşılaştırılması. Toprak Bilimi ve Bitki Besleme Dergisi, 7(2): 158-166.
  • Gülser, C., Ekberli, İ, Mamedov, A., 2019. Toprak sıcaklığının yüzey ısı akışına bağlı olarak değişimi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29(1): 1-9.
  • Gülser, C., Ekberli, İ., Mamedov, A., Özdemir, N., 2018. Faz değişimine bağlı olarak ısı iletkenliği denkleminin incelenmesi ve toprak neminin ısısal yayınıma etkisi. Anadolu Tarım Bilimleri Dergisi, 33(3): 261-269.
  • Hanks RJ, Ashcroft GJ (1980). Applied soil physics. Soil water and temperature applications. Springer-Verlag Berlin Heidelberg, pp. 125-144.
  • Hedayati-Dezfooli, M., Leong, W.H., 2019. An experimental study of coupled heat and moisture transfer in soils at high temperature conditions for a medium coarse soil. International Journal of Heat and Mass Transfer, 137: 372-389.
  • Heusinkveld, B.G., Jacobs, A.F.G., Holtslag, A.A.M., Berkowicz, S.M., 2004. Surface energy balance closure in an arid region: role of soil heat flux, Agricultural and Forest Meteorology, 122: 21-37.
  • Hilel D (2004). Introduction to environmental soil physics. Elsevier Academic Press, USA, pp. 215-233. Iden, S.C., Blocher, J.R., Diamantopoulos, E.D., Peters, A., Durner, W., 2019. Numerical test of the laboratory evaporation method using coupled water, vapor and heat flow modelling. Journal of Hydrology, 570: 574-583.
  • İsachenko VP, Osipova VA, Sukomel AS. 1981. Heat transfer (in Russian). Energoizdat Press, Moscow, 417 p. Jackson, M.L., 1958. Soil Chemical Analysis. Prentice Hall Inc., Englewood Cliffs, NJ, 498 p.
  • Ji, X.B., Kang, E.S., Zhao, W.Z., Zhang, Z.H., Jin, B.W., 2009. Simulation of heat and water transfer in a surface irrigated, cropped sandy soil. Agricultural Water Management, 96: 1010-1020.
  • Kader, M.A., Nakamura, K., Senge, M., Mojid, M.A., Kawashima, S., 2019. Numerical simulation of water- and heat-flow regimes of mulched soil in rain-fed soybean field in central Japan. Soil & Tillage Research, 191: 142-155.
  • Kreith, F., Black, W.Z., 1983. Bazic Heat Transfer (in Russian). Press Mir, Moscow, 512 p. Kustas, W.P., Prueger, J.H., Hatfield, J.L., Ramalingam, K., Hipps, L.E., 2000.Variability in soil heat flux from a mesquite dune site. Agricultural and Forest Meteorology, 103: 249–264.
  • Li Y, Kustas WP, Huang C, Kool D, Haghighi E (2018). Evaluation of soil resistance formulations for estimates of sensible heat flux in a desert vineyard. Agricultural and Forest Meteorology, 260–261: 255–261.
  • Luikov AV (1967). Theory of thermal conductivity (in Russian). Vysshaya Shkola Press, Moscow, 599 p.
  • Luikov AV, Mikhailov YuA (1965). Theory of energy and mass transfer. Pergamon Press, Oxford, England, 392 p.
  • Lu S, Wang H, Meng P, Zhang J, Zhang X (2018). Determination of soil ground heat flux through heat pulse and plate methods: Effects of subsurface latent heat on surface energy balance closure. Agricultural and Forest Meteorology, 260–261: 176–182.
  • Ochsner TE, Sauer TJ, Horton R (2006). Field tests of the soil heat flux plate method and some alternatives. Agronomy Journal, 98 (4): 1005–1014.
  • Peng X, Heitman J, Horton R, Ren T (2015). Field evaluation and improvement of the plate method for measuring soil heat flux density. Agricultural and Forest Meteorology, 214-215: 341–349.
  • Richards, L.A. (Editor), 1954. Diagnosis and Improvement of Saline and Alkaline Soils. United States Department of Agriculture. Agriculture Handbook No. 60, 159 p.
  • Sauer TJ, Horton R (2005). Soil heat flux. In: Hatfield, J.L., Baker, J.M. (Eds.), Micrometeorology in Agricultural Systems. Agronomy Monograph No. 47. American Society of Agronomy, Madison, WI, pp. 131–154.
  • Shao C, Chen J, Li L, Xu W, Chen S, Gwen T, Xu J, Zhang W (2008). Spatialvariability in soil heat flux at three Inner Mongolia steppe ecosystems. Agricultural and Forest Meteorology, 148: 1433–1443.
  • Soil Survey Staff., 1992. Procedures for collecting soil samples and methods of analysis for soil survey. Soil Surv. Invest. Rep. I. U.S. Gov. Print. Office, Washington D.C. USA.
  • Sterling, A.T., Jackson, R.D., 1986. Temperature. In: Klute, A. (Ed.), Methods of Soil Analysis Part 1. Physical and Mineralogical Methods. Agronomy Monograph No: 9, ASA, SSSA, Madison WI.
  • Stull, R.B., 1988. An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 p.
  • Trombotto, D., Borzotta, E., 2009. Indicators of present global warming through changes in active layer-thickness, estimation of thermal diffusivity and geomorphological observations in the Morenas Coloradas rockglacier, Central Andes of Mendoza, Argentina. Cold Regions Science and Technology, 55: 321–330.
  • Vogel, T., Dohnal, M., Votrubova, J., 2011. Modeling heat fluxes in macroporous soil under sparse young forest of temperate humid climate. Journal of Hydrology, 402: 367-376.
  • Yao, Y., Zhang, Y., Liu, Q., Liu, S., Jia, K., Zhang, X., Xu, Z., Xu, T., Chen, J., Fisher, J.B., 2019. Evaluation of a satellite-derived model parameterized by three soil moisture constraints to estimate terrestrial latent heat flux in the Heihe River basin of Northwest China. Science of the Total Environment, 695: 133787.
  • Zhao, Y., Peth, S., Horn, R., Krummelbein, J., Ketzer, B., Gao, Y., Doerner, J., Bernhofer, C., Peng, X., 2010. Modeling grazing effects on coupled water and heat fluxes in Inner Mongolia grassland. Soil & Tillage Research, 109: 75-86.
There are 49 citations in total.

Details

Primary Language Turkish
Journal Section Anadolu Tarım Bilimleri Dergisi
Authors

İmanverdi Ekberli

Coşkun Gülser

Orhan Dengiz

Publication Date June 15, 2020
Acceptance Date March 31, 2020
Published in Issue Year 2020 Volume: 35 Issue: 2

Cite

APA Ekberli, İ., Gülser, C., & Dengiz, O. (2020). Yarı Humid Ekolojik Koşullar Altında Oluşmuş Bazı Vertisol Alt Grup Toprakların Profillerinde Isı Akışının Belirlenmesi. Anadolu Tarım Bilimleri Dergisi, 35(2), 198-207. https://doi.org/10.7161/omuanajas.690151
AMA Ekberli İ, Gülser C, Dengiz O. Yarı Humid Ekolojik Koşullar Altında Oluşmuş Bazı Vertisol Alt Grup Toprakların Profillerinde Isı Akışının Belirlenmesi. ANAJAS. June 2020;35(2):198-207. doi:10.7161/omuanajas.690151
Chicago Ekberli, İmanverdi, Coşkun Gülser, and Orhan Dengiz. “Yarı Humid Ekolojik Koşullar Altında Oluşmuş Bazı Vertisol Alt Grup Toprakların Profillerinde Isı Akışının Belirlenmesi”. Anadolu Tarım Bilimleri Dergisi 35, no. 2 (June 2020): 198-207. https://doi.org/10.7161/omuanajas.690151.
EndNote Ekberli İ, Gülser C, Dengiz O (June 1, 2020) Yarı Humid Ekolojik Koşullar Altında Oluşmuş Bazı Vertisol Alt Grup Toprakların Profillerinde Isı Akışının Belirlenmesi. Anadolu Tarım Bilimleri Dergisi 35 2 198–207.
IEEE İ. Ekberli, C. Gülser, and O. Dengiz, “Yarı Humid Ekolojik Koşullar Altında Oluşmuş Bazı Vertisol Alt Grup Toprakların Profillerinde Isı Akışının Belirlenmesi”, ANAJAS, vol. 35, no. 2, pp. 198–207, 2020, doi: 10.7161/omuanajas.690151.
ISNAD Ekberli, İmanverdi et al. “Yarı Humid Ekolojik Koşullar Altında Oluşmuş Bazı Vertisol Alt Grup Toprakların Profillerinde Isı Akışının Belirlenmesi”. Anadolu Tarım Bilimleri Dergisi 35/2 (June 2020), 198-207. https://doi.org/10.7161/omuanajas.690151.
JAMA Ekberli İ, Gülser C, Dengiz O. Yarı Humid Ekolojik Koşullar Altında Oluşmuş Bazı Vertisol Alt Grup Toprakların Profillerinde Isı Akışının Belirlenmesi. ANAJAS. 2020;35:198–207.
MLA Ekberli, İmanverdi et al. “Yarı Humid Ekolojik Koşullar Altında Oluşmuş Bazı Vertisol Alt Grup Toprakların Profillerinde Isı Akışının Belirlenmesi”. Anadolu Tarım Bilimleri Dergisi, vol. 35, no. 2, 2020, pp. 198-07, doi:10.7161/omuanajas.690151.
Vancouver Ekberli İ, Gülser C, Dengiz O. Yarı Humid Ekolojik Koşullar Altında Oluşmuş Bazı Vertisol Alt Grup Toprakların Profillerinde Isı Akışının Belirlenmesi. ANAJAS. 2020;35(2):198-207.
Online ISSN: 1308-8769