Research Article
BibTex RIS Cite

Mera Topraklarında Nem Dağılımının Konumsal ve Zamansal Değişiminin Profil Boyutunda İzlenmesi

Year 2020, Volume: 35 Issue: 2, 215 - 222, 15.06.2020
https://doi.org/10.7161/omuanajas.701109

Abstract

Toprak nemi hidrolojik döngü içerisinde oransal olarak çok az olmasına rağmen tarımsal üretim ve hidrolojik süreçler için anahtar öneme sahiptir. Özellikle toprak profili derinliğinde toprak neminin zamansal değişiminin izlenmesi özellikle su kısıtı gözlenen kurak ve yarı kurak alanlar için çok daha önemlidir. Proje su toplama havzalarında arazi kullanım ve profil derinliğinin nem kapsamına etkisinin belirlenmesi amacıyla yürütülmüştür. Bu amaçla araştırma Ankara Yenimahalle Güvenç Havzasında, mera arazisinde horizon derinlikleri dikkate alınarak profil nem örneklemesi yapılmıştır. Jeoistatistik yöntemle nem dağılım haritaları oluşturulmuştur. Araştırma sonuçları profilde nem dağılımının konumsal ve zamansal olarak değiştiğini göstermiştir. Toprak bünyesi profil derinliğiyle birlikte nem dağılımını etkileyen ön önemli faktör olarak bulunmuştur. Toprak şartlarının kuruya doğru geçişi sırasında başlangıçta topoğrafya, nem kontrol eden etmen olurken daha sonra meteorolojik şartlar etkili parametreler olarak belirlenmiştir. Bünye içerisinde kil kapsamı azaldıkça atmosferik şartların etkisi artmıştır. Sonuçlar toprak neminin konumsal ve zamansal davranışı nedeniyle tek bir ölçümle tanımlanmasının doğru olmadığını, belirsizliği azaltmak için ıslak ve kurak dönemleri içeren sürekli gözlemlerin yapılması gerektiğini göstermiştir.

Supporting Institution

Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü (TAGEM)

References

  • Baskan, O., Kosker, Y., Erpul, G., 2013. Spatial and temporal variation of moisture content in the soil profiles of two different agricultural fields of semi-arid region. Environmental Monitoring and Assessment. 185(12):10441-10458
  • Blake, G.R., Hartge, K.H., 1986. Bulk Density and Particle Density. In : Methods of Soil Analysis, Part I, Physical and Mineralogical Methods. Pp: 363-381. ASA and SSSA Agronomy Monograph no 9(2nd ed), Madison.
  • Bouyoucos, G.J., 1951. A recaliberation of the hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43; 435-438.
  • Brocca, L., Morbidelli, R., Melone, F., Moramarco, T., 2007. Soil moisture spatial variability in experimental areas of central Italy, J. Hydrol. 333, 356-373.
  • Cosh, M.H., Jackson, T.J., Starks, P., Heathman, G.C., 2006. Temporal stability of surface soil moisture in the Little Washita River Watershed and its applications in satellite soil moisture product validation. Journal of Hydrology 323, 168–177.
  • De Troch, F.P., Troch, P.A., Su, Z., Lın, D.S., 1996. Application of remote sensing for hydrological modelling. In: Abbott, M.B., Refsgaard, J.C. (Eds.), Distributed Hydrological Modelling. Kluwer Academic Press, pp. 165–192.
  • De Lannoy, G.J.M., Verhoest, N.E.C., Houser, P.R., Gısh, T.J., Meırvenne, M.V., 2006. Spatial and temporal characteristics of soil moisture in an intensively monitored agricultural field (OPE3). J Hydrol. 331, 719-730. Dengiz, O., Başkan, O. 2005. Ankara Güvenç Havzası Topraklarının Temel Özellikleri ve Sınıflandırılması. Selçuk Üniversitesi Ziraat Fakültesi Dergisi. 19 (37); 27-36.
  • Endale, D.M., Fisher, D.S., Schomberg, H.H., 2005. Soil water regime in space and time in a small Georgia Piedomont catchment under pasture. SSSAJ. 70, 1-13.
  • Famiglietti, J.S., Rudnicki, J.W., Rodell, M., 1998. Variability in surface soil moisture content along a hillslope transect: Rattlesnake Hill, Texas. J Hydrol. 210, 259–281.
  • Fares, A., Temimi, M., Morgan, K., Kelleners, T.J., 2013. In-situ and remote soil moisture sensing technologies for vadose zone hydrology. Vadose Zone J. 12 (2).
  • Gamma Design Software., 2014. GS+ Geostatistics for the Environmental Sciences. Version 9. Plainwell, Michigan. USA.
  • Gardner, W.H., 1986. Water content. In Klute, A., ed., “Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods”, Monograph No. 9, Am. Soc. Argon. Madison, WI.
  • Grayson, R.B., Western, A.W., 1998. Towards areal estimation of soil water content from point measurements: time and space stability of mean response. J. Hydrol. 207, 68–82.
  • Hillel, D., 1998. Environmental soil physics. San Diego, USA: Academic. 765 p.
  • Junior, V.V., Carvalho, M.P., Dafonte, J., Freddi, O.S., Vazques, E.V., Ingaramo, O.E., 2006. Spatial variability of soil water content and mechanical resistance of Brazilian ferralsol. Soil Till. Res., 85, 166-177.
  • Jackson, M.L., 1958. Soil Chemical Analysis. Prentice Hall Inc., Englewood Cliffs, N.J.
  • Mohanty, B. P., Skaggs, T. H., Famiglietti, J. S., 2000. Analysis and mapping of field-scale soil moisture variability using high resolution ground based data during the Southern Great Plains 1997 (SGP97) hydrology experiment. Water Resources Research, 36, 1023–1032.
  • Robinson, D.A. et al., 2008. Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods. Hydrol. Process. 22 (18), 3604–3635.
  • Soil Survey Staff. 1999. Soil Taxonomy. A Basic of Soil Classification for Making and Interpreting Soil Survey. USDA Handbook No: 436, Washington D.C.
  • Wang, J., Fu. Bojie., Quı, Y., Chen, L.., Wang, Z., 2001. Geostatistical analysis of soil moisture variability on Da Nangou catchment of the loess plateau, China. Environmental Geology. 41, 113-120.
  • Williams, A.G., Ternan, J.L., Fiztzjhon, C., De Alba, S., and Perez-Gonzales, A., 2003. Soil moisture variability and land use in a seasonally arid environment. Hydrological Processes, 17, 225-235.
  • Zhu, Q. et al., 2012. Monitoring and prediction of soil moisture spatial-temporal variations froma hydropedological perspective: a review. Soil Res. 50 (8), 625–637.

Monitoring spatial and temporal variation of moisture distribution in pasture soils at profile depth

Year 2020, Volume: 35 Issue: 2, 215 - 222, 15.06.2020
https://doi.org/10.7161/omuanajas.701109

Abstract

Although soil moisture is proportionally small in the hydrological cycle, it is key factor for agricultural production and hydrological processes. In particular, monitoring the temporal change of soil moisture in soil profile depth is much more important especially for arid and semi-arid areas where water constraints are observed. The project was carried out in order to determine the effect of land use and profile depth on moisture content in watersheds. For this purpose, profile moisture sampling was carried out in Ankara Yenimahalle Güvenç Basin, taking into consideration of the horizon depth in pasture land. Soil moisture distribution maps were created by geostatistical method. Research results have shown that the distribution of moisture in the profile changes spatially and temporally. Soil texture has been found as a preliminary factor affecting moisture retention along with profile depth. During the movement of soil conditions to dry, topography was the first factor controlling humidity, while later meteorological conditions were determined as effective parameters. As the clay content decreased within the soil texture, the effect of atmospheric conditions increased. The results showed that it is not correct to define soil moisture with a single measurement due to its spatial and temporal behavior, therefore continuous observations including wet and dry periods should be made to reduce uncertainty.

References

  • Baskan, O., Kosker, Y., Erpul, G., 2013. Spatial and temporal variation of moisture content in the soil profiles of two different agricultural fields of semi-arid region. Environmental Monitoring and Assessment. 185(12):10441-10458
  • Blake, G.R., Hartge, K.H., 1986. Bulk Density and Particle Density. In : Methods of Soil Analysis, Part I, Physical and Mineralogical Methods. Pp: 363-381. ASA and SSSA Agronomy Monograph no 9(2nd ed), Madison.
  • Bouyoucos, G.J., 1951. A recaliberation of the hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43; 435-438.
  • Brocca, L., Morbidelli, R., Melone, F., Moramarco, T., 2007. Soil moisture spatial variability in experimental areas of central Italy, J. Hydrol. 333, 356-373.
  • Cosh, M.H., Jackson, T.J., Starks, P., Heathman, G.C., 2006. Temporal stability of surface soil moisture in the Little Washita River Watershed and its applications in satellite soil moisture product validation. Journal of Hydrology 323, 168–177.
  • De Troch, F.P., Troch, P.A., Su, Z., Lın, D.S., 1996. Application of remote sensing for hydrological modelling. In: Abbott, M.B., Refsgaard, J.C. (Eds.), Distributed Hydrological Modelling. Kluwer Academic Press, pp. 165–192.
  • De Lannoy, G.J.M., Verhoest, N.E.C., Houser, P.R., Gısh, T.J., Meırvenne, M.V., 2006. Spatial and temporal characteristics of soil moisture in an intensively monitored agricultural field (OPE3). J Hydrol. 331, 719-730. Dengiz, O., Başkan, O. 2005. Ankara Güvenç Havzası Topraklarının Temel Özellikleri ve Sınıflandırılması. Selçuk Üniversitesi Ziraat Fakültesi Dergisi. 19 (37); 27-36.
  • Endale, D.M., Fisher, D.S., Schomberg, H.H., 2005. Soil water regime in space and time in a small Georgia Piedomont catchment under pasture. SSSAJ. 70, 1-13.
  • Famiglietti, J.S., Rudnicki, J.W., Rodell, M., 1998. Variability in surface soil moisture content along a hillslope transect: Rattlesnake Hill, Texas. J Hydrol. 210, 259–281.
  • Fares, A., Temimi, M., Morgan, K., Kelleners, T.J., 2013. In-situ and remote soil moisture sensing technologies for vadose zone hydrology. Vadose Zone J. 12 (2).
  • Gamma Design Software., 2014. GS+ Geostatistics for the Environmental Sciences. Version 9. Plainwell, Michigan. USA.
  • Gardner, W.H., 1986. Water content. In Klute, A., ed., “Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods”, Monograph No. 9, Am. Soc. Argon. Madison, WI.
  • Grayson, R.B., Western, A.W., 1998. Towards areal estimation of soil water content from point measurements: time and space stability of mean response. J. Hydrol. 207, 68–82.
  • Hillel, D., 1998. Environmental soil physics. San Diego, USA: Academic. 765 p.
  • Junior, V.V., Carvalho, M.P., Dafonte, J., Freddi, O.S., Vazques, E.V., Ingaramo, O.E., 2006. Spatial variability of soil water content and mechanical resistance of Brazilian ferralsol. Soil Till. Res., 85, 166-177.
  • Jackson, M.L., 1958. Soil Chemical Analysis. Prentice Hall Inc., Englewood Cliffs, N.J.
  • Mohanty, B. P., Skaggs, T. H., Famiglietti, J. S., 2000. Analysis and mapping of field-scale soil moisture variability using high resolution ground based data during the Southern Great Plains 1997 (SGP97) hydrology experiment. Water Resources Research, 36, 1023–1032.
  • Robinson, D.A. et al., 2008. Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods. Hydrol. Process. 22 (18), 3604–3635.
  • Soil Survey Staff. 1999. Soil Taxonomy. A Basic of Soil Classification for Making and Interpreting Soil Survey. USDA Handbook No: 436, Washington D.C.
  • Wang, J., Fu. Bojie., Quı, Y., Chen, L.., Wang, Z., 2001. Geostatistical analysis of soil moisture variability on Da Nangou catchment of the loess plateau, China. Environmental Geology. 41, 113-120.
  • Williams, A.G., Ternan, J.L., Fiztzjhon, C., De Alba, S., and Perez-Gonzales, A., 2003. Soil moisture variability and land use in a seasonally arid environment. Hydrological Processes, 17, 225-235.
  • Zhu, Q. et al., 2012. Monitoring and prediction of soil moisture spatial-temporal variations froma hydropedological perspective: a review. Soil Res. 50 (8), 625–637.
There are 22 citations in total.

Details

Primary Language Turkish
Journal Section Anadolu Tarım Bilimleri Dergisi
Authors

Oğuz Başkan 0000-0002-1797-6590

Publication Date June 15, 2020
Acceptance Date March 26, 2020
Published in Issue Year 2020 Volume: 35 Issue: 2

Cite

APA Başkan, O. (2020). Mera Topraklarında Nem Dağılımının Konumsal ve Zamansal Değişiminin Profil Boyutunda İzlenmesi. Anadolu Tarım Bilimleri Dergisi, 35(2), 215-222. https://doi.org/10.7161/omuanajas.701109
AMA Başkan O. Mera Topraklarında Nem Dağılımının Konumsal ve Zamansal Değişiminin Profil Boyutunda İzlenmesi. ANAJAS. June 2020;35(2):215-222. doi:10.7161/omuanajas.701109
Chicago Başkan, Oğuz. “Mera Topraklarında Nem Dağılımının Konumsal Ve Zamansal Değişiminin Profil Boyutunda İzlenmesi”. Anadolu Tarım Bilimleri Dergisi 35, no. 2 (June 2020): 215-22. https://doi.org/10.7161/omuanajas.701109.
EndNote Başkan O (June 1, 2020) Mera Topraklarında Nem Dağılımının Konumsal ve Zamansal Değişiminin Profil Boyutunda İzlenmesi. Anadolu Tarım Bilimleri Dergisi 35 2 215–222.
IEEE O. Başkan, “Mera Topraklarında Nem Dağılımının Konumsal ve Zamansal Değişiminin Profil Boyutunda İzlenmesi”, ANAJAS, vol. 35, no. 2, pp. 215–222, 2020, doi: 10.7161/omuanajas.701109.
ISNAD Başkan, Oğuz. “Mera Topraklarında Nem Dağılımının Konumsal Ve Zamansal Değişiminin Profil Boyutunda İzlenmesi”. Anadolu Tarım Bilimleri Dergisi 35/2 (June 2020), 215-222. https://doi.org/10.7161/omuanajas.701109.
JAMA Başkan O. Mera Topraklarında Nem Dağılımının Konumsal ve Zamansal Değişiminin Profil Boyutunda İzlenmesi. ANAJAS. 2020;35:215–222.
MLA Başkan, Oğuz. “Mera Topraklarında Nem Dağılımının Konumsal Ve Zamansal Değişiminin Profil Boyutunda İzlenmesi”. Anadolu Tarım Bilimleri Dergisi, vol. 35, no. 2, 2020, pp. 215-22, doi:10.7161/omuanajas.701109.
Vancouver Başkan O. Mera Topraklarında Nem Dağılımının Konumsal ve Zamansal Değişiminin Profil Boyutunda İzlenmesi. ANAJAS. 2020;35(2):215-22.
Online ISSN: 1308-8769