Research Article
BibTex RIS Cite

Influence of Zn seed priming and coating on germination and seedling growth in wheat

Year 2020, Volume: 35 Issue: 2, 259 - 267, 15.06.2020
https://doi.org/10.7161/omuanajas.745891

Abstract

In this study, the effect of seeds priming (2.5 and 5 mM) and coating (1.5, 2.5 and 5 g Zn/kg seeds) on early growth stages of two wheat varieties showing difference for their seed Zn contents (Imam with average 29 mg/kg Zn and Altındane 25.5 mg/kg Zn) on germination and seedling growth parameters were determined under controlled-growth chamber conditions 20-25°C and 70% RH. In each treatment, 25 seeds were placed into Petri dishes to determine seed germination and sown into pots containing 700 g alluvial soil with low Zn content to monitor seedling growth for 21 days using three replications. The results revealed that seed priming with Zn, particularly high dose (5 mM) had relatively positive impact on seed germination, mean germination time and seedling growth parameters when compared with low Zn dose (2.5 mM) and hydropriming in both two wheat varieties. Seed coating with Zn, particularly with low Zn concentration (1.5 g Zn/kg seeds) and in Altındane with less Zn content, has shown good respond and improved seed germination parameters in comparison with untreated seeds for both wheat varieties. In conclusion, Zn seed priming and coating had more evident effects on germination and seedling growth parameters in variety with low Zn content compared with high one. The lowest concentration of seed coated with Zn of 1.5 g Zn/kg seeds had positive impact on wheat seedlings growth as well as it has low cost and safe to prevent of environment pollution.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • References Ajouri, A., Asgedom, H., Becker, M. 2004. Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. Journal of Plant Nutrition and Soil Science, 167(5): 630-636.
  • Arif, M., Ali, S., Shah, A., Javed, N., Rashid, A. 2005. Seed priming maize for improving emergence and seedling growth. Sarhad J Agric., 21:239-243.
  • Bradáčová, K., Weber, N.F., Morad-Talab, N., Asim, M., Imran, M., Weinmann, M., Neumann, G. 2016. Micronutrients (Zn/Mn), seaweed extracts, and plant growth-promoting bacteria as cold-stress protectants in maize. Chemical and Biological Technologies in Agriculture, 3(1): 19.
  • Cakmak, I. 2008. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant and Soil, 302(1-2): 1-17.
  • Cambrollé, J., Mancilla-Leytón, J., Muñoz-Vallés, S., Luque, T., Figueroa, M. 2012. Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides. Chemosphere, 86(9): 867-874.
  • Dirginčiutė-Volodkienė, V., Pečiulytė, D. 2011. Increased soil heavy metal concentrations affect the structure of soil fungus community. Agriculturae Conspectus Scientificus, 76(1): 27-33.
  • Farooq, M., Wahid, A. Siddique, K.H. 2012. Micronutrient application through seed treatments: A review. Journal of Soil Science and Plant Nutrition, 12(1): 125-142.
  • Freeborn, J.R., Holshouser, D.L., Alley, M.M., Powell, N.L., Orcutt, D.M. 2001. Soybean yield response to reproductive stage soil-applied nitrogen and foliar-applied boron. Agronomy Journal, 93(6): 1200-1209.
  • Goiba, P.K., Durgude, A., Pharande, A., Kadlag, A., Chauhan, M., Nimbalkar, C. 2018. Effect of seed priming with iron and zinc on yield contributing parameters as well as the nutrient uptake of the soybean (Glycine max) in calcareous soil. IJCS, 6(2): 758-760.
  • Harris, D., Rashid, A., Miraj, G., Arif, M. Shah, H. 2007. ‘On-farm’seed priming with zinc sulphate solution-A cost-effective way to increase the maize yields of resource-poor farmers. Field Crops Research, 102(2): 119-127.
  • Harris, D., Rashid, A., Miraj, G., Arif, M. Yunas, M. 2008. ‘On-farm’seed priming with zinc in chickpea and wheat in Pakistan. Plant and Soil, 306(1-2): 3-10.
  • Hidoto, L., Worku, W., Mohammed, H., Bunyamin, T. 2017. Effects of zinc application strategy on zinc content and productivity of chickpea grown under zinc deficient soils. Journal of Soil Science and Plant Nutrition, 17(1): 112-126.
  • ISTA. 2015. International rules for seed testing Basserdorf, Switzerland: International Seed Testing Association.
  • Imran, M., Mahmood, A., Römheld, V., Neumann, G. 2013. Nutrient seed priming improves seedling development of maize exposed to low root zone temperatures during early growth. European Journal of Agronomy, 49: 141-148.
  • Johnson, S., Lauren, J., Welch, R., Duxbury, J. 2005. A comparison of the effects of micronutrient seed priming and soil fertilization on the mineral nutrition of chickpea (Cicer arietinum), lentil (Lens culinaris), rice (Oryza sativa) and wheat (Triticum aestivum) in Nepal. Experimental Agriculture, 41(4): 427-448.
  • Mohsin, A., Ahmad, A,, Farooq, M., Ullah, S. 2014. Influence of zinc application through seed treatment and foliar spray on growth, productivity and grain quality of hybrid maize. J. Anim. Plant Sci, 24(5): 1494-1503.
  • Muhammad, I., Kolla, M., Volker, R. Günter, N. 2015. Impact of nutrient seed priming on germination, seedling development, nutritional status and grain yield of maize. Journal of Plant Nutrition, 38(12): 1803-1821.
  • Prom-u-thai, C., Rerkasem, B., Yazici, A., Cakmak, I. 2012. Zinc priming promotes seed germination and seedling vigor of rice. Journal of Plant Nutrition and Soil Science, 175(3): 482-488.
  • Rashid, A., Harris, D., Hollington, P., Khattak, R. 2002. Prospects for saline agriculture. Springer, 423-431.
  • Rehman, A. Farooq, M. 2016. Zinc seed coating improves the growth, grain yield and grain biofortification of bread wheat. Acta Physiologiae Plantarum, 38(10): 238.
  • Rehman, A., Farooq, M., Ahmad, R. Basra, S. 2015. Seed priming with zinc improves the germination and early seedling growth of wheat. Seed Science and Technology, 43(2): 262-268.
  • Reis, S., Pavia, I., Carvalho, A., Moutinho-Pereira, J., Correia, C. Lima-Brito, J. 2018. Seed priming with iron and zinc in bread wheat: effects in germination, mitosis and grain yield. Protoplasma, 255(4): 1179-1194.
  • Rengel, Z., Graham, R.D. 1995. Importance of seed Zn content for wheat growth on Zn-deficient soil. Plant and Soil, 173(2): 259-266.
  • Salah, S.M., Yajing, G., Dongdong, C., Jie, L., Aamir, N., Qijuan, H., . . . Jin, H. 2015. Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Scientific Reports, 5: 14278.
  • Scott, D., Archie, W. 1978. Sulphur, phosphate, and molybdenum coating of legume seed. New Zealand Journal of Agricultural Research, 21(4): 643-649.
  • Scott, J., Jessop, R., Steer, R., McLachlan, G. 1987. Effect of nutrient seed coating on the emergence of wheat and oats. Fertilizer Research, 14(3): 205-217.
  • Singh, B. Usha, K. 2003. Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulation, 39(2): 137-141.
  • Slaton, N.A., Wilson, C.E., Ntamatungiro, S., Norman, R.J., Boothe, D.L. 2001. Evaluation of zinc seed treatments for rice. Agronomy Journal, 93(1): 152-157.
  • Stein, A.J. 2010. Global impacts of human mineral malnutrition. Plant and Soil, 335(1-2): 133-154.
  • Tavares, L.C., Rufino, CdA., Dörr, C.S., Barros, A.C.S.A., Peske, S.T. 2012. Performance of lowland rice seeds coated with dolomitic limestone and aluminum silicate. Revista Brasileira de Sementes, 34(2): 202-211.
  • Taylor, A., Harman, G. 1990. Concepts and technologies of selected seed treatments. Annual Review of Phytopathology, 28(1): 321-339.
  • Todeschini, V., Lingua, G., D’agostino, G., Carniato, F., Roccotiello, E., Berta, G. 2011. Effects of high zinc concentration on poplar leaves: a morphological and biochemical study. Environmental and Experimental Botany, 71(1): 50-56.
  • Welch, R.M. 1999. Importance of seed mineral nutrient reserves in crop growth. Mineral Nutrition of Crops. Food Product Press. New York: 205-206.
  • White, P.J. Broadley, M.R. 2011. Physiological limits to zinc biofortification of edible crops. Frontiers in Plant Science, 2: 80.
  • Yilmaz, A., Ekiz, H., Torun, B., Gultekin, I., Karanlik, S., Bagci, S., Cakmak, I. 1997. Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc deficient calcareous soils. Journal of Plant Nutrition, 20(4-5): 461-471.
  • Zeļonka L., Stramkale, V., Vikmane, M. 2005. Effect and after-effect of barley seed coating with phosphorus on germination, photosynthetic pigments and grain yield. Acta Universitatis Latviensis, 691: 111-119.
  • Zhang, S., Hu, J., Zhang, Y., Xie, X., Knapp, A. 2007. Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Australian Journal of Agricultural Research, 58(8): 811-815.

Ekim öncesi tohumlara Zn ile ön uygulama ve tohum kaplamanın buğdayda çimlenme ve fide gelişimine etkileri

Year 2020, Volume: 35 Issue: 2, 259 - 267, 15.06.2020
https://doi.org/10.7161/omuanajas.745891

Abstract

Bu çalışmada, Zn ile tohum ön uygulamaları (2.5 ve 5 mM) ve tohum kaplamanın (1.5, 2.5 ve 5 g Zn/kg tohum), çinko içerikleri bakımından farklılıklar gösteren Imam (29 mg/kg Zn) ve Altındane (25.5 mg/kg Zn) buğday çeşitlerinde erken büyüme dönemlerinde, tohumların çimlenmesi ve fide büyüme parametreleri üzerine etkileri 20-25°C sıcaklık ve %70 oransal neme sahip kontrollü büyüme odası koşullarında belirlenmiştir. Her uygulamada, tohum çimlenmesini belirlemek için petri kaplarına ve 21 gün boyunca fide büyümesini izlemek için düşük Zn içeriğine sahip 700 g alüvyonlu toprak içeren saksılara üç tekrarlamalı olarak 25’er tohum ekilmiştir. Sonuçlar, düşük dozda (2.5 mM) Zn ile tohum ön uygulama ve destile su ile tohum ön uygulama işlemleriyle karşılaştırıldığında, Zn ile özellikle yüksek dozda (5 mM) tohum ön uygulama işleminin tohumların çimlenme oranı, ortalama çimlenme süresi ve fide büyümesi parametreleri üzerinde her iki buğday çeşidinde de olumlu bir etkiye sahip olduğunu göstermiştir. Zn ile tohum kaplaması, özellikle düşük Zn konsantrasyonlu tohum kaplaması (1.5 g Zn/kg tohumlar) ve daha az Zn içeriğine sahip Altındane çeşidinde olmak üzere, her iki buğday çeşidinde de muamele edilmemiş tohumlara oranla daha iyi tepki vermiş ve çimlenme parametrelerinde artış göstermiştir. Sonuç olarak, tohumların ekim öncesi Zn ile ön uygulamaya ve kaplamaya tabi tutulması, düşük Zn içeriğine sahip çeşitte yüksek olana kıyasla çimlenme ve fide büyüme parametreleri üzerinde daha belirgin etkiye sahip olmuştur. En düşük oranda çinko ile tohum kaplama (1.5 g Zn/kg tohum) buğday fidelerinin gelişimi üzerine olumlu etkileri yanı sıra düşük maliyetli ve çevre kirliliğini önleme bakımından güvenli olmuştur.

Project Number

-

References

  • References Ajouri, A., Asgedom, H., Becker, M. 2004. Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. Journal of Plant Nutrition and Soil Science, 167(5): 630-636.
  • Arif, M., Ali, S., Shah, A., Javed, N., Rashid, A. 2005. Seed priming maize for improving emergence and seedling growth. Sarhad J Agric., 21:239-243.
  • Bradáčová, K., Weber, N.F., Morad-Talab, N., Asim, M., Imran, M., Weinmann, M., Neumann, G. 2016. Micronutrients (Zn/Mn), seaweed extracts, and plant growth-promoting bacteria as cold-stress protectants in maize. Chemical and Biological Technologies in Agriculture, 3(1): 19.
  • Cakmak, I. 2008. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant and Soil, 302(1-2): 1-17.
  • Cambrollé, J., Mancilla-Leytón, J., Muñoz-Vallés, S., Luque, T., Figueroa, M. 2012. Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides. Chemosphere, 86(9): 867-874.
  • Dirginčiutė-Volodkienė, V., Pečiulytė, D. 2011. Increased soil heavy metal concentrations affect the structure of soil fungus community. Agriculturae Conspectus Scientificus, 76(1): 27-33.
  • Farooq, M., Wahid, A. Siddique, K.H. 2012. Micronutrient application through seed treatments: A review. Journal of Soil Science and Plant Nutrition, 12(1): 125-142.
  • Freeborn, J.R., Holshouser, D.L., Alley, M.M., Powell, N.L., Orcutt, D.M. 2001. Soybean yield response to reproductive stage soil-applied nitrogen and foliar-applied boron. Agronomy Journal, 93(6): 1200-1209.
  • Goiba, P.K., Durgude, A., Pharande, A., Kadlag, A., Chauhan, M., Nimbalkar, C. 2018. Effect of seed priming with iron and zinc on yield contributing parameters as well as the nutrient uptake of the soybean (Glycine max) in calcareous soil. IJCS, 6(2): 758-760.
  • Harris, D., Rashid, A., Miraj, G., Arif, M. Shah, H. 2007. ‘On-farm’seed priming with zinc sulphate solution-A cost-effective way to increase the maize yields of resource-poor farmers. Field Crops Research, 102(2): 119-127.
  • Harris, D., Rashid, A., Miraj, G., Arif, M. Yunas, M. 2008. ‘On-farm’seed priming with zinc in chickpea and wheat in Pakistan. Plant and Soil, 306(1-2): 3-10.
  • Hidoto, L., Worku, W., Mohammed, H., Bunyamin, T. 2017. Effects of zinc application strategy on zinc content and productivity of chickpea grown under zinc deficient soils. Journal of Soil Science and Plant Nutrition, 17(1): 112-126.
  • ISTA. 2015. International rules for seed testing Basserdorf, Switzerland: International Seed Testing Association.
  • Imran, M., Mahmood, A., Römheld, V., Neumann, G. 2013. Nutrient seed priming improves seedling development of maize exposed to low root zone temperatures during early growth. European Journal of Agronomy, 49: 141-148.
  • Johnson, S., Lauren, J., Welch, R., Duxbury, J. 2005. A comparison of the effects of micronutrient seed priming and soil fertilization on the mineral nutrition of chickpea (Cicer arietinum), lentil (Lens culinaris), rice (Oryza sativa) and wheat (Triticum aestivum) in Nepal. Experimental Agriculture, 41(4): 427-448.
  • Mohsin, A., Ahmad, A,, Farooq, M., Ullah, S. 2014. Influence of zinc application through seed treatment and foliar spray on growth, productivity and grain quality of hybrid maize. J. Anim. Plant Sci, 24(5): 1494-1503.
  • Muhammad, I., Kolla, M., Volker, R. Günter, N. 2015. Impact of nutrient seed priming on germination, seedling development, nutritional status and grain yield of maize. Journal of Plant Nutrition, 38(12): 1803-1821.
  • Prom-u-thai, C., Rerkasem, B., Yazici, A., Cakmak, I. 2012. Zinc priming promotes seed germination and seedling vigor of rice. Journal of Plant Nutrition and Soil Science, 175(3): 482-488.
  • Rashid, A., Harris, D., Hollington, P., Khattak, R. 2002. Prospects for saline agriculture. Springer, 423-431.
  • Rehman, A. Farooq, M. 2016. Zinc seed coating improves the growth, grain yield and grain biofortification of bread wheat. Acta Physiologiae Plantarum, 38(10): 238.
  • Rehman, A., Farooq, M., Ahmad, R. Basra, S. 2015. Seed priming with zinc improves the germination and early seedling growth of wheat. Seed Science and Technology, 43(2): 262-268.
  • Reis, S., Pavia, I., Carvalho, A., Moutinho-Pereira, J., Correia, C. Lima-Brito, J. 2018. Seed priming with iron and zinc in bread wheat: effects in germination, mitosis and grain yield. Protoplasma, 255(4): 1179-1194.
  • Rengel, Z., Graham, R.D. 1995. Importance of seed Zn content for wheat growth on Zn-deficient soil. Plant and Soil, 173(2): 259-266.
  • Salah, S.M., Yajing, G., Dongdong, C., Jie, L., Aamir, N., Qijuan, H., . . . Jin, H. 2015. Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Scientific Reports, 5: 14278.
  • Scott, D., Archie, W. 1978. Sulphur, phosphate, and molybdenum coating of legume seed. New Zealand Journal of Agricultural Research, 21(4): 643-649.
  • Scott, J., Jessop, R., Steer, R., McLachlan, G. 1987. Effect of nutrient seed coating on the emergence of wheat and oats. Fertilizer Research, 14(3): 205-217.
  • Singh, B. Usha, K. 2003. Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulation, 39(2): 137-141.
  • Slaton, N.A., Wilson, C.E., Ntamatungiro, S., Norman, R.J., Boothe, D.L. 2001. Evaluation of zinc seed treatments for rice. Agronomy Journal, 93(1): 152-157.
  • Stein, A.J. 2010. Global impacts of human mineral malnutrition. Plant and Soil, 335(1-2): 133-154.
  • Tavares, L.C., Rufino, CdA., Dörr, C.S., Barros, A.C.S.A., Peske, S.T. 2012. Performance of lowland rice seeds coated with dolomitic limestone and aluminum silicate. Revista Brasileira de Sementes, 34(2): 202-211.
  • Taylor, A., Harman, G. 1990. Concepts and technologies of selected seed treatments. Annual Review of Phytopathology, 28(1): 321-339.
  • Todeschini, V., Lingua, G., D’agostino, G., Carniato, F., Roccotiello, E., Berta, G. 2011. Effects of high zinc concentration on poplar leaves: a morphological and biochemical study. Environmental and Experimental Botany, 71(1): 50-56.
  • Welch, R.M. 1999. Importance of seed mineral nutrient reserves in crop growth. Mineral Nutrition of Crops. Food Product Press. New York: 205-206.
  • White, P.J. Broadley, M.R. 2011. Physiological limits to zinc biofortification of edible crops. Frontiers in Plant Science, 2: 80.
  • Yilmaz, A., Ekiz, H., Torun, B., Gultekin, I., Karanlik, S., Bagci, S., Cakmak, I. 1997. Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc deficient calcareous soils. Journal of Plant Nutrition, 20(4-5): 461-471.
  • Zeļonka L., Stramkale, V., Vikmane, M. 2005. Effect and after-effect of barley seed coating with phosphorus on germination, photosynthetic pigments and grain yield. Acta Universitatis Latviensis, 691: 111-119.
  • Zhang, S., Hu, J., Zhang, Y., Xie, X., Knapp, A. 2007. Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Australian Journal of Agricultural Research, 58(8): 811-815.
There are 37 citations in total.

Details

Primary Language English
Journal Section Anadolu Tarım Bilimleri Dergisi
Authors

Mohaned Mohammed 0000-0002-0118-8039

Erkut Pekşen 0000-0002-1543-5547

Project Number -
Publication Date June 15, 2020
Acceptance Date June 3, 2020
Published in Issue Year 2020 Volume: 35 Issue: 2

Cite

APA Mohammed, M., & Pekşen, E. (2020). Influence of Zn seed priming and coating on germination and seedling growth in wheat. Anadolu Tarım Bilimleri Dergisi, 35(2), 259-267. https://doi.org/10.7161/omuanajas.745891
AMA Mohammed M, Pekşen E. Influence of Zn seed priming and coating on germination and seedling growth in wheat. ANAJAS. June 2020;35(2):259-267. doi:10.7161/omuanajas.745891
Chicago Mohammed, Mohaned, and Erkut Pekşen. “Influence of Zn Seed Priming and Coating on Germination and Seedling Growth in Wheat”. Anadolu Tarım Bilimleri Dergisi 35, no. 2 (June 2020): 259-67. https://doi.org/10.7161/omuanajas.745891.
EndNote Mohammed M, Pekşen E (June 1, 2020) Influence of Zn seed priming and coating on germination and seedling growth in wheat. Anadolu Tarım Bilimleri Dergisi 35 2 259–267.
IEEE M. Mohammed and E. Pekşen, “Influence of Zn seed priming and coating on germination and seedling growth in wheat”, ANAJAS, vol. 35, no. 2, pp. 259–267, 2020, doi: 10.7161/omuanajas.745891.
ISNAD Mohammed, Mohaned - Pekşen, Erkut. “Influence of Zn Seed Priming and Coating on Germination and Seedling Growth in Wheat”. Anadolu Tarım Bilimleri Dergisi 35/2 (June 2020), 259-267. https://doi.org/10.7161/omuanajas.745891.
JAMA Mohammed M, Pekşen E. Influence of Zn seed priming and coating on germination and seedling growth in wheat. ANAJAS. 2020;35:259–267.
MLA Mohammed, Mohaned and Erkut Pekşen. “Influence of Zn Seed Priming and Coating on Germination and Seedling Growth in Wheat”. Anadolu Tarım Bilimleri Dergisi, vol. 35, no. 2, 2020, pp. 259-67, doi:10.7161/omuanajas.745891.
Vancouver Mohammed M, Pekşen E. Influence of Zn seed priming and coating on germination and seedling growth in wheat. ANAJAS. 2020;35(2):259-67.
Online ISSN: 1308-8769