Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of soil hydropedological properties by factor analysis in gypsic ustorthent and typic ustifluent

Yıl 2021, Cilt: 36 Sayı: 1, 93 - 103, 15.02.2021

Öz

This study was conducted to evaluate soil morphological and hydrologic variables by factor analysis in a paddy field (Gypsic Ustorthent) and grassland (Typic Ustifluvents) in Kızılırmak county of Çankırı province in central Anatolia of Turkey. Fifty undisturbed soil samples were taken from the paddy field and seventy from the grassland with plastic soil samplers. Disturbed soil samples were taken from the same points for basic soil analyses. Saturated hydraulic conductivity (Ks) was measured on soil columns using a hydraulic conductivity set with a constant-head permeameter. Following the Ks measurements, soil columns were covered to prevent evaporation. When the water flow through the columns was stopped, samplings were taken for bulk density and penetration resistance was measured. Then the soils were removed, the morphological properties were defined and quantified with the help of standard soil description charts. Soil parametric and morphological properties were evaluated by factor analysis. Five factors (Hydropedology, Silt and soil chemistry, Root, pH and mottles, Aggregation) described 80.00% of the total variation in the paddy soils and six factors (Hydropedology, Silt and soil chemistry, Root, pH and mottles, Color and soil chemistry, Aggregation) defined 84.41% of the total variation in the grassland soils. The use of soil morphological variables along with parametric variables was found promising in understanding interlinkages between pedology and hydrology.

Destekleyen Kurum

TUBITAK/ÇANKIRI KARATEKIN UNIVERSİTY

Proje Numarası

2233/2012_12

Teşekkür

The author thanks the Scientific and Technological Council of Turkey (TUBITAK) for the financial support given under the grant of BIDEP (2233) and Cankırı Karatekin University for partially supporting this study under the grant of BAP (2012/08).

Kaynakça

  • Ahmed, M.A., Passioura, J., Carminati, A., 2018. Hydraulic processes in roots and the rhizosphere pertinent to increasing yield of water-limited grain crops: a critical review. Journal of Experimental Botany. 2018(69)13: 3255–3265. doi:10.1093/jxb/ery183.
  • Anonymous, 2011. T.C. Çankırı Valiliği Çevre ve Şehircilik İl Müdürlüğü www.Csb.Gov.Tr/Turkce/Dosya/Ced/Icdr2011/Cankiri_Icdr2011.Pdf.
  • Black, G.R., Hartge, K.H., 1986. Bulk density. In: A. Klute (Ed.). Methods of Soil Analysis. Part I. Physical and Mineralogical Methods. 2nd. Ed., Agronomy No. 9 (part I). ASA-SSSA. Madison, Wisconsin, USA. 1986. 363–375.
  • Bouma, J., Paetzold, R.F., Grossman, R.B., 1982. Measuring hydraulic conductivity in soil survey. Soil Survey Invest. Rep. 38. USDA Soil Conserv. Serv. Lincoln, NE. 1982.
  • Bouma, J., 2006. Hydropedology as a powerful tool for environmental policy research. Geoderma. 2006. 131:275–86. https://doi.org/10.1016/j.geoderma.2005.03.009.
  • Cámara, J., Lázaro, A., Gómez-Miguel, V., 2018. Quantifying hydropedological properties of terroir at different scales. Implications in vineyard characteristics of three viticultural regions of the Iberian Peninsula. E3S Web of Conferences 50, 0100. doi.org/10.1051/e3sconf/20185001001.
  • Carter, D.L., Mortland, M.M., Kemper, W.D., 1986. Specific Surface. In: Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods (2nd Edition). Agronomy Monograph, No. 9. pp. 413-423. 1986. https://eprints. nwisrl. ars. usda. gov/id/eprint/734.
  • Chan, K.Y. and Heenan, D.P., 1998. Effect of lime (CaCO3) application on soil structural stability of a red earth. Australian Journal of Soil Research. 1998. 36(1) 73 – 86. https://doi.org/10.1071/S97054.
  • Costello, A.B. and Osborne, J.W., 2005. Best Practices in Exploratory Factor Analysis: Four Recommendations for Getting the Most from Your Analysis. Practical Assessment Research & Evaluation. 2005. Vol 10, No 7. https://scholarworks. Umass. edu/pare/vol10/iss1/7.
  • Dexter, A.R., Richard, G., 2009. Tillage of soils in relation to their bi-modal pore size distributions, Soil Till. Res. 103. 2009. pp. 113-118. doi.org/10.1016/j.still.2008.10.001.
  • Erşahin, S. and Karaman, MR., 2000. Toprak Değişkenliğinin Yere Özgü Amenajman ve Toprak Verimliliği Çalışmaları için Değerlendirilmesinde Faktör Analizinin Kullanılması. Tarım Bilimleri Dergisi. 2000. 6: 76-81.
  • FAO., 2006. Guidelines for soil description. Fourth edition. Food and Agriculture Organization of The United Nations. 2006. ISBN 92-5-105521-1. Rome.
  • Fazeli, S., Abtahi, A., Rosa, M.P., and Abbaslou, H., 2017. Gypsification processes and porosity changes in soils from southern Iran (Jooyom region-Fars province). Arid Ecosystems. 2017. 7: 80-91. doi: 10.1134/S2079096117020093. Gee, G.W. and Bauder, J.W., 1986. Particle-size analysis. Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods. 1986. 383-411. Agronomy Monograph no. 9 (2nd Edition). Gorsuch, R.L., 1983. Factor Analysis. Hillsdale, NJ: Erlbaum. 1983.
  • Guber, A.K., Pachepsky, Y.A., van Genuchten, M.Th., Rawls, W.J., Šimůnek, J., 2006. Field-scale water flow simulations using ensembles of pedotransfer functions for soil water retention. Vadose Zone J. 2006. 5:234–247. doi:10.2136/vzj2005.0111.
  • Günal, H., 2006. Ardışık İki Topografya’da Yer Alan Toprakların Oluşumları ve Sınıflamaları. Gaziosmanpaşa Üniv. Ziraat Fak. Der. 2006.
  • Hair, J.F., Anderson, R.E., Tatham, R.L., Black, W.C. 1995. Multivariate data analysis. 4th ed. New Jersey: Prentice-Hall Inc. 1995.
  • Hair, J.F., Anderson, R.E., Tatham, R.L., Black, W.C., 1998. Multivariate Data Analysis (ed.). In Black 1998, Multivariate Data Analysis (ed.): New Jersey: Prentice-Hall International, Inc.
  • Hornberger, G.M., Raffensperger, J.P., Wiberg, P.L. and Eshleman, K.N., 1998. Elements of Physical Hydrology, Johns Hopkins Univ. Press, Baltimore, Md. 1998.
  • Jarvis, N.J., 2007. A review of non-equilibrium water flow and solute transport in soilmacropores: principles, controlling factors and consequences for water quality. Eur. J. Soil Sci. 2007. 58, 523–546. doi: 10.1111/j.1365-2389.2007.00915. x.
  • Johnson, R. and Wichern, D. 1992. Applied multivariate statistical methods. Prentice Hall, Englewood Cliffs, NJ. 1992.
  • Karahan, G. and Erşahin, S. 2016. Predicting saturated hydraulic conductivity using soil morphological properties. Eurasian J Soil Sci. 2016, 5 (1) 30–38. doi.org/10.18393/ejss.2016.1.030-038.
  • Karahan, G. and Erşahin, S., 2017. Relating Macropore Flow to Soil Parametric and Morphological Variables. SSSJ. 2017. Vol. 81 No.5, p.1014-1024. doi:10.2136/sssaj2016.10.0327.
  • Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution. pp. 425-442 in A. Klute, ed. Methods of soil analysis. Part 1 2nded. American Soc. of Agronomy, Madison, WI. 1986.
  • Keskin, H. and Grunwald, S., 2018. Regression kriging as a workhorse in the digital soil mapper's toolbox. Geoderma. 2018. 326 (2018) 22–41. doi.org/10.1016/j.geoderma.2018.04.004.
  • Kleinbaum, D.G., Kupper, L.L., Muller, K.E., 1988. Variable Reduction and Factor Analysis: In: M Payne (Ed.), Applied Reg. Analysis and Other Multivariate Methods, 2th ed., p.595-641.
  • Klute, A. and Dirksen, C., 1986. Hydraulic conductivity and diffusivity: laboratory methods. In. Klute, A (ed), Methods of soil analysis, Part 1. Madison, pp. 687-734; Am Soc Agron. 1986.
  • Kutilek, M. and Nielsen, D.R., 2007. Interdisciplinarity of hydropedology. Geoderma. 2007. 138 252–260. doi: 10.1016/j.geoderma.2006.11.015. Libohova, Z., Schoeneberger, P., Bowling, L.C., Owens, P.R., Wysocki, D., Wills, S., Williams, C.O. and Seybold, C., 2018. Soil systems for upscaling saturated hydraulic conductivity for hydrological modeling in the critical zone. Vadose Zone J. 2018. 17:170051. doi:10.2136/vzj2017.03.0051.
  • Lin, H., Bouma, J., Pachepsky, Y., Western, A., Thompson, J., van Genuchten, R., Vogel, H.J. and Lilly, A., Hydropedology: Synergistic integration of pedology and hydrology Water Resource Research. 2006. vol. 42, w05301, doi:10.1029/2005wr004085.
  • McKeague, J.A., Wang, C., and Topp, G.C., 1982. Estimating saturated hydraulic conductivity from soil morphology. SSSAJ. 1982. 46, 1239–1244. doi:10.2136/sssaj1982.03615995004600060024x.
  • Mallarino, A.P., 1999. Interpreting Within-Field Relationships Between Crop Yields and Soil and Plant Variables Using Factor Analysis. Precision Agriculture. 1999. 1, 15-25.
  • McLean, E., 1982. Soil pH and Lime Requirement. p. 199–224. In Page, A., Miller, R., Keeney, D. (eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties. 2nd ed. American Society of Agronomy and Soil Science Society of America, Madison. 1982.
  • Mohanty, B.P., Kanwar, R.S., and Everts, C.J., 1994. Comparison of saturated hydraulic conductivity measurement methods for a glacial-till soil. Soil Sci. Soc. Am. J. 1994. 58:672–677. doi:10.2136/sssaj1994.03615995005800030006x. Moreno-Maroto, J.M. and Alonso-Azcárate, J., 2017. Plastic limit and other consistency parameters by a bending method and interpretation of plasticity classification in soils. Geotech. Test. J. 2017. 40 (3), 467–482.
  • Moreno-Maroto, J.M. and Alonso-Azcárate, J., 2018.What is clay? A new definition of “clay” based on plasticity and its impact on the most widespread soil classification systems. Applied Clay Science. 2018. 161, 57–63. doi.org/10.1016/j.clay.2018.04.011.
  • Mulaik, S.A., 2009. The foundations of factor analysis. Second Edition. Chapman & Hall/CRC Taylor and Francis Group, Statistics in the Social and Behavioral Sciences Series. Book Number-13: 978-1-4200-9981-2. 2009. Mulla, D. and Mc Bratney, A., 2002. Soil spatial variability. In: A. Warrick, editor, Soil physics companion. CRC Press, Boca Raton. 2002. p. 343–373.
  • Nelson, R.E., 1982. Carbonate and Gypsum. p. 181–196. In A.L. Page (ed.), Methods of soil analysis. Part 2. Chemical and microbiological properties. 2nd ed. American Society of Agronomy, Soil Science Society of America, Madison. 1982.
  • Nelson, D.W. and Sommers, LE., 1982. Total Carbon, Organic Carbon, and Organic Matter. p. 539–579. In A.L. Page (ed.), Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy-SSSAJ, Madison. 1982.
  • Nemes, A., Rawls, W.J. and Pachepsky, Y.A., 2004. Influence of Organic Matter on the Estimation of Saturated Hydraulic Conductivity. SSSAJ. 2005. 69:1330–1337. doi:10.2136/sssaj2004.0055.
  • Oosterbaan, R.J. and Nijland, H.J., 1994. Determining the saturated hydraulic conductivity. In: H.P. Ritzema, editor, Drainage principles and applications. Water Resour. Publ., Wageningen, the Netherlands. 1994. p. 435–456.
  • Pachepsky, Y.A. and Rawls, W.R., 2004. (Eds.) Development of Pedotransfer Functions in Soil Hydrology, Elsevier, New York. 2004.
  • Pachepsky, Y.A., Rawls, W.J. and Lin, H.S., 2005. Hydropedology and Pedotransfer Functions. Geoderma. 2006. 131:308–316. doi: 10.1016/j.geoderma.2005.03.012.
  • Pachepsky, Y., Gimenez, D., Lilly, A. and Nemes, A., 2008. Promises of hydropedology. Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2008. 3, No. 040. doi: 10.1079/PAVSNNR20083040.
  • Pagliai, M. and Vignozzi, N., 2002. Image analysis and microscopic techniques to characterize soil pore system. In: Blahovec, J., Kutilek, M. (Eds.), Physical Methods in Agriculture. Luwer Academic, New York. 2002. pp. 13–38.
  • Perret, J.S., Prasher, S.O., Kantzas, A. and Langford, C., 1999. Three-dimensional quantification of macropore networks in undisturbed soil cores. Soil Sci. Soc. Am. J. 1999. 63:1530–1543. doi:10.2136/sssaj1999.6361530x. Pett MA, Lackey NR and Sullivan JJ. Making Sense of Factor Analysis: The use of factor analysis for instrument development in health care research. Cal: Sage Publications 2003.
  • Polidori, E.,2002. Reappraisal of the activity of clays. Act chart Soils Found. 2009. 49 (3), pp. 431-441.
  • Rawls, W.J. and Pachepsky, Y.A.,2002. Soil consistence and structure as predictors of water retention. Soil Sci. Soc. of Am. J. 2002. 66,1115–1126.
  • Rhoades, J.D., 1982. Cation Exchange Capacity. p. 149–157. In A.L. Page (ed.), Methods of soil analysis. Part 2. Chemical and microbiological properties. 2nd ed. American Society of Agronomy-Soil Science Society of America, Madison. 1982.
  • Sağlam, M., Öztürk, H.S., Erşahin, S. and Özkan, A.İ., 2011. Spatial variation of soil physical properties in adjacent alluvial and colluvial soils under Ustic moisture regime. Hydrology and Earth System Sciences Discussion. 2011. 8, 4261–4280. doi:10.5194/hessd-8-4261-2011.
  • Sağlam, M., 2013. Çok değişkenli istatistiksel yöntemler ile toprak özelliklerinin gruplandırılması. Toprak Su Dergisi. 2013. 2. Sağlam, M., Dengiz, O., Özyazıcı, M.A., Erkoçak, A. ve Türkmen, F., 2014. Faktör analizi ile minimum veri setinin oluşturulması ve haritalanması: Samsun ili örneği. Ege Üniv. Ziraat Fak. Dergisi. 2014. 51(2): 133-144.
  • Sharma, S., 1996. Applied Multivariate Techniques. John Wileyand Sons Inc., New York.
  • Schafer, W.M. and Singer, M.J., 1976. A new method of measuring shrink-swell potential using soil pastes. Soil Sci. Soc. Am. J. 1976. 40(5): 805–806.
  • Schmitz, R.M., Schroeder, C., Charlier, R., 2004. Chemo–mechanical interactions in clay: a correlation between clay mineralogy and Atterberg limits. Appl. Clay Sci. 2004. 26, pp. 351-358.
  • Schoeneberger, P.J., 2012. Field book for describing and sampling soils: Government Printing Off. 2012. Shukla, M.K., Lal, R., Ebinger, M., 2006. Determining soil quality indicators by factor analysis. Soil & Tillage Research. 2006. 87, 194–204.
  • Skempton, A.W., 1953. The Colloidal Activity of Clays. Proceedings of the 3rd International Conference of Soil Mechanics and Foundation Engineering, Zurich. 1953. 1, pp. 57-61.
  • Soil Survey Staff, 2014. Keys to Soil Taxonomy, Washington, DC: USDA Nat. Resour. Conserv. Serv., 2014.
  • Tabachnick, B.G. and Fidell, L.S.,2007. Using Multivariate Statistics. Boston: Pearson Edu Inc. 2007.
  • Thompson, B., 2004. Exploratory and confirmatory factor analysis: understanding concepts and applications. Washington, DC: American Psychological Association. 2004.
  • van Tol, J.J., Le Roux, P.A.L. and Hensley, M., 2012. Pedotransfer functions to determine water conducting macroporosity in South African soils. Water Science and Tecnology. 2012. 65 (3) 550-557.
  • van Tol, J.J., Le Roux., P.A.L., 2019. Hydropedological grouping of South African soil form. South African Journal of Plant and Soil, 2019. 36:3, 233-235, doi:10.1080/02571862.2018.1537012 .
  • Velicer, W.F. and Jackson, D.N., Component Analysis Versus Common Factor Analysis Some Further Observations. Multivariate Behav. Research. 1990. 25(1), 97-114.
  • van Tol, J.J., Lorentz, S.A., 2018. Hydropedological interpretation of regional soil information to conceptualize groundwater–surface water interactions. Vadose Zone J. 2018. 17: 170097. doi:10.2136/vzj2017.05.0097.
  • Virto, I., 2011. Gartzia-Bengoetxea N and Fernandez-Ugalde O. Role of organic matter and carbonates in soil aggregation estimated using laser diffractometry. Pedosphere. 2011. 21: 566–572.
  • Walker, P.J., 1995. Strength, Durability and Shrinkage Characteristics of Cement Stabilised Soil Blocks. Cement & Concrete Comp. 1995. 17, 301-310. 0958-9465(95)00019-4.
  • Watson, K.W., Luxmoore, R.J., 1986. Estimating macroporosity in a Forest watershed by use of a tension infiltrometer. SSSAJ. 1986. 50: 578–582.
  • White, R.E., 1985. The influence of macropores on the transport of dissolved and suspended matter through soil. Adv. Soil Sci. 1985. 3: 95–120. doi:10.1007/978-1-4612-5090-6_3. Williams, B., Onsman, A. and Brown, T., 2010. Exploratory factor analysis: A five-step guide for novices. J. of Emergency Primary Health Care (JEPHC). 2010. Vol. 8, Issue 3.
  • Wood, E.F., 1999. The role of lateral flow: Over- or underrated, in Integrating Hydrology, Ecosystem Dynamics, and Biogeochemistry in Complex Landscapes, edited by J. D. Tenhunen and P. Kabat. 1999. pp. 197– 215, John Wiley, Hoboken, N. J.
  • Wu, G.L., Liu, Y., Yang, Z., Cui, Z., Deng, L., Chang, X.F. and Shi, Z.H., 2017. Root channels to indicate the increase in soil matrix water infiltration capacity of arid reclaimed mine soils. Journal of Hydrology. 2017. 546 (2017) 133–139.

Toprak hidropedolojik özelliklerinin gypsic ustorthent ve typic ustifluent’de faktör analizi ile değerlendirilmesi

Yıl 2021, Cilt: 36 Sayı: 1, 93 - 103, 15.02.2021

Öz

Bu çalışma, Orta Anadolu'nun Çankırı ili Kızılırmak ilçesinde bulunan bir çeltik tarlasında (Typic Ustifluvent) ve mera alanında (Gypsic Ustorthent) toprak morfolojik ve hidrolojik değişkenlerini faktör analizi ile değerlendirmek amacıyla yapılmıştır. Plastik toprak örnekleyicileri ile çeltik tarlasından 50, mera alanından 70 adet bozulmamış toprak örneği alınmıştır. Temel toprak analizleri için aynı noktalardan bozulmuş toprak örnekleri alınmıştır. Doymuş hidrolik iletkenlik (Ks), toprak kolonlarında sabit yük seviyeli bir hidrolik iletkenlik seti kullanılarak ölçülmüştür. Ks ölçümünü takiben, buharlaşmayı önlemek için toprak kolonlarının üstü kapatılmıştır. Kolonlardan su akışı durduğunda, hacim ağırlığı için örnekler alınmış ve penetrasyon direnci ölçülmüştür. Sonra, topraklar çıkarılmış, toprak örneklerinin morfolojik özellikleri tanımlanarak standart toprak tanımlama çizelgeleri yardımıyla nicelendirilmiştir. Çeltik tarlası ve mera topraklarında toprak parametrik ve morfolojik özellikleri faktör analizi ile değerlendirilmiştir. Çeltik topraklardaki toplam varyasyonun %80’ini beş faktör (Hidropedoloji, Kök, Silt ve toprak kimyası, Toprak kimyası, Agregasyon) ve mera topraklarındaki toplam varyasyonun %84.41'ini altı faktör (Hidropedoloji, Kök, Silt ve toprak kimyası, Toprak kimyası, Renk ve toprak kimyası, Agregasyon) tanımlamıştır. Pedoloji ve hidroloji arasındaki bağlantıların anlaşılmasında parametrik değişkenlerle birlikte toprak morfolojik değişkenlerinin kullanılması umut verici bulunmuştur.

Proje Numarası

2233/2012_12

Kaynakça

  • Ahmed, M.A., Passioura, J., Carminati, A., 2018. Hydraulic processes in roots and the rhizosphere pertinent to increasing yield of water-limited grain crops: a critical review. Journal of Experimental Botany. 2018(69)13: 3255–3265. doi:10.1093/jxb/ery183.
  • Anonymous, 2011. T.C. Çankırı Valiliği Çevre ve Şehircilik İl Müdürlüğü www.Csb.Gov.Tr/Turkce/Dosya/Ced/Icdr2011/Cankiri_Icdr2011.Pdf.
  • Black, G.R., Hartge, K.H., 1986. Bulk density. In: A. Klute (Ed.). Methods of Soil Analysis. Part I. Physical and Mineralogical Methods. 2nd. Ed., Agronomy No. 9 (part I). ASA-SSSA. Madison, Wisconsin, USA. 1986. 363–375.
  • Bouma, J., Paetzold, R.F., Grossman, R.B., 1982. Measuring hydraulic conductivity in soil survey. Soil Survey Invest. Rep. 38. USDA Soil Conserv. Serv. Lincoln, NE. 1982.
  • Bouma, J., 2006. Hydropedology as a powerful tool for environmental policy research. Geoderma. 2006. 131:275–86. https://doi.org/10.1016/j.geoderma.2005.03.009.
  • Cámara, J., Lázaro, A., Gómez-Miguel, V., 2018. Quantifying hydropedological properties of terroir at different scales. Implications in vineyard characteristics of three viticultural regions of the Iberian Peninsula. E3S Web of Conferences 50, 0100. doi.org/10.1051/e3sconf/20185001001.
  • Carter, D.L., Mortland, M.M., Kemper, W.D., 1986. Specific Surface. In: Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods (2nd Edition). Agronomy Monograph, No. 9. pp. 413-423. 1986. https://eprints. nwisrl. ars. usda. gov/id/eprint/734.
  • Chan, K.Y. and Heenan, D.P., 1998. Effect of lime (CaCO3) application on soil structural stability of a red earth. Australian Journal of Soil Research. 1998. 36(1) 73 – 86. https://doi.org/10.1071/S97054.
  • Costello, A.B. and Osborne, J.W., 2005. Best Practices in Exploratory Factor Analysis: Four Recommendations for Getting the Most from Your Analysis. Practical Assessment Research & Evaluation. 2005. Vol 10, No 7. https://scholarworks. Umass. edu/pare/vol10/iss1/7.
  • Dexter, A.R., Richard, G., 2009. Tillage of soils in relation to their bi-modal pore size distributions, Soil Till. Res. 103. 2009. pp. 113-118. doi.org/10.1016/j.still.2008.10.001.
  • Erşahin, S. and Karaman, MR., 2000. Toprak Değişkenliğinin Yere Özgü Amenajman ve Toprak Verimliliği Çalışmaları için Değerlendirilmesinde Faktör Analizinin Kullanılması. Tarım Bilimleri Dergisi. 2000. 6: 76-81.
  • FAO., 2006. Guidelines for soil description. Fourth edition. Food and Agriculture Organization of The United Nations. 2006. ISBN 92-5-105521-1. Rome.
  • Fazeli, S., Abtahi, A., Rosa, M.P., and Abbaslou, H., 2017. Gypsification processes and porosity changes in soils from southern Iran (Jooyom region-Fars province). Arid Ecosystems. 2017. 7: 80-91. doi: 10.1134/S2079096117020093. Gee, G.W. and Bauder, J.W., 1986. Particle-size analysis. Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods. 1986. 383-411. Agronomy Monograph no. 9 (2nd Edition). Gorsuch, R.L., 1983. Factor Analysis. Hillsdale, NJ: Erlbaum. 1983.
  • Guber, A.K., Pachepsky, Y.A., van Genuchten, M.Th., Rawls, W.J., Šimůnek, J., 2006. Field-scale water flow simulations using ensembles of pedotransfer functions for soil water retention. Vadose Zone J. 2006. 5:234–247. doi:10.2136/vzj2005.0111.
  • Günal, H., 2006. Ardışık İki Topografya’da Yer Alan Toprakların Oluşumları ve Sınıflamaları. Gaziosmanpaşa Üniv. Ziraat Fak. Der. 2006.
  • Hair, J.F., Anderson, R.E., Tatham, R.L., Black, W.C. 1995. Multivariate data analysis. 4th ed. New Jersey: Prentice-Hall Inc. 1995.
  • Hair, J.F., Anderson, R.E., Tatham, R.L., Black, W.C., 1998. Multivariate Data Analysis (ed.). In Black 1998, Multivariate Data Analysis (ed.): New Jersey: Prentice-Hall International, Inc.
  • Hornberger, G.M., Raffensperger, J.P., Wiberg, P.L. and Eshleman, K.N., 1998. Elements of Physical Hydrology, Johns Hopkins Univ. Press, Baltimore, Md. 1998.
  • Jarvis, N.J., 2007. A review of non-equilibrium water flow and solute transport in soilmacropores: principles, controlling factors and consequences for water quality. Eur. J. Soil Sci. 2007. 58, 523–546. doi: 10.1111/j.1365-2389.2007.00915. x.
  • Johnson, R. and Wichern, D. 1992. Applied multivariate statistical methods. Prentice Hall, Englewood Cliffs, NJ. 1992.
  • Karahan, G. and Erşahin, S. 2016. Predicting saturated hydraulic conductivity using soil morphological properties. Eurasian J Soil Sci. 2016, 5 (1) 30–38. doi.org/10.18393/ejss.2016.1.030-038.
  • Karahan, G. and Erşahin, S., 2017. Relating Macropore Flow to Soil Parametric and Morphological Variables. SSSJ. 2017. Vol. 81 No.5, p.1014-1024. doi:10.2136/sssaj2016.10.0327.
  • Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution. pp. 425-442 in A. Klute, ed. Methods of soil analysis. Part 1 2nded. American Soc. of Agronomy, Madison, WI. 1986.
  • Keskin, H. and Grunwald, S., 2018. Regression kriging as a workhorse in the digital soil mapper's toolbox. Geoderma. 2018. 326 (2018) 22–41. doi.org/10.1016/j.geoderma.2018.04.004.
  • Kleinbaum, D.G., Kupper, L.L., Muller, K.E., 1988. Variable Reduction and Factor Analysis: In: M Payne (Ed.), Applied Reg. Analysis and Other Multivariate Methods, 2th ed., p.595-641.
  • Klute, A. and Dirksen, C., 1986. Hydraulic conductivity and diffusivity: laboratory methods. In. Klute, A (ed), Methods of soil analysis, Part 1. Madison, pp. 687-734; Am Soc Agron. 1986.
  • Kutilek, M. and Nielsen, D.R., 2007. Interdisciplinarity of hydropedology. Geoderma. 2007. 138 252–260. doi: 10.1016/j.geoderma.2006.11.015. Libohova, Z., Schoeneberger, P., Bowling, L.C., Owens, P.R., Wysocki, D., Wills, S., Williams, C.O. and Seybold, C., 2018. Soil systems for upscaling saturated hydraulic conductivity for hydrological modeling in the critical zone. Vadose Zone J. 2018. 17:170051. doi:10.2136/vzj2017.03.0051.
  • Lin, H., Bouma, J., Pachepsky, Y., Western, A., Thompson, J., van Genuchten, R., Vogel, H.J. and Lilly, A., Hydropedology: Synergistic integration of pedology and hydrology Water Resource Research. 2006. vol. 42, w05301, doi:10.1029/2005wr004085.
  • McKeague, J.A., Wang, C., and Topp, G.C., 1982. Estimating saturated hydraulic conductivity from soil morphology. SSSAJ. 1982. 46, 1239–1244. doi:10.2136/sssaj1982.03615995004600060024x.
  • Mallarino, A.P., 1999. Interpreting Within-Field Relationships Between Crop Yields and Soil and Plant Variables Using Factor Analysis. Precision Agriculture. 1999. 1, 15-25.
  • McLean, E., 1982. Soil pH and Lime Requirement. p. 199–224. In Page, A., Miller, R., Keeney, D. (eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties. 2nd ed. American Society of Agronomy and Soil Science Society of America, Madison. 1982.
  • Mohanty, B.P., Kanwar, R.S., and Everts, C.J., 1994. Comparison of saturated hydraulic conductivity measurement methods for a glacial-till soil. Soil Sci. Soc. Am. J. 1994. 58:672–677. doi:10.2136/sssaj1994.03615995005800030006x. Moreno-Maroto, J.M. and Alonso-Azcárate, J., 2017. Plastic limit and other consistency parameters by a bending method and interpretation of plasticity classification in soils. Geotech. Test. J. 2017. 40 (3), 467–482.
  • Moreno-Maroto, J.M. and Alonso-Azcárate, J., 2018.What is clay? A new definition of “clay” based on plasticity and its impact on the most widespread soil classification systems. Applied Clay Science. 2018. 161, 57–63. doi.org/10.1016/j.clay.2018.04.011.
  • Mulaik, S.A., 2009. The foundations of factor analysis. Second Edition. Chapman & Hall/CRC Taylor and Francis Group, Statistics in the Social and Behavioral Sciences Series. Book Number-13: 978-1-4200-9981-2. 2009. Mulla, D. and Mc Bratney, A., 2002. Soil spatial variability. In: A. Warrick, editor, Soil physics companion. CRC Press, Boca Raton. 2002. p. 343–373.
  • Nelson, R.E., 1982. Carbonate and Gypsum. p. 181–196. In A.L. Page (ed.), Methods of soil analysis. Part 2. Chemical and microbiological properties. 2nd ed. American Society of Agronomy, Soil Science Society of America, Madison. 1982.
  • Nelson, D.W. and Sommers, LE., 1982. Total Carbon, Organic Carbon, and Organic Matter. p. 539–579. In A.L. Page (ed.), Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy-SSSAJ, Madison. 1982.
  • Nemes, A., Rawls, W.J. and Pachepsky, Y.A., 2004. Influence of Organic Matter on the Estimation of Saturated Hydraulic Conductivity. SSSAJ. 2005. 69:1330–1337. doi:10.2136/sssaj2004.0055.
  • Oosterbaan, R.J. and Nijland, H.J., 1994. Determining the saturated hydraulic conductivity. In: H.P. Ritzema, editor, Drainage principles and applications. Water Resour. Publ., Wageningen, the Netherlands. 1994. p. 435–456.
  • Pachepsky, Y.A. and Rawls, W.R., 2004. (Eds.) Development of Pedotransfer Functions in Soil Hydrology, Elsevier, New York. 2004.
  • Pachepsky, Y.A., Rawls, W.J. and Lin, H.S., 2005. Hydropedology and Pedotransfer Functions. Geoderma. 2006. 131:308–316. doi: 10.1016/j.geoderma.2005.03.012.
  • Pachepsky, Y., Gimenez, D., Lilly, A. and Nemes, A., 2008. Promises of hydropedology. Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2008. 3, No. 040. doi: 10.1079/PAVSNNR20083040.
  • Pagliai, M. and Vignozzi, N., 2002. Image analysis and microscopic techniques to characterize soil pore system. In: Blahovec, J., Kutilek, M. (Eds.), Physical Methods in Agriculture. Luwer Academic, New York. 2002. pp. 13–38.
  • Perret, J.S., Prasher, S.O., Kantzas, A. and Langford, C., 1999. Three-dimensional quantification of macropore networks in undisturbed soil cores. Soil Sci. Soc. Am. J. 1999. 63:1530–1543. doi:10.2136/sssaj1999.6361530x. Pett MA, Lackey NR and Sullivan JJ. Making Sense of Factor Analysis: The use of factor analysis for instrument development in health care research. Cal: Sage Publications 2003.
  • Polidori, E.,2002. Reappraisal of the activity of clays. Act chart Soils Found. 2009. 49 (3), pp. 431-441.
  • Rawls, W.J. and Pachepsky, Y.A.,2002. Soil consistence and structure as predictors of water retention. Soil Sci. Soc. of Am. J. 2002. 66,1115–1126.
  • Rhoades, J.D., 1982. Cation Exchange Capacity. p. 149–157. In A.L. Page (ed.), Methods of soil analysis. Part 2. Chemical and microbiological properties. 2nd ed. American Society of Agronomy-Soil Science Society of America, Madison. 1982.
  • Sağlam, M., Öztürk, H.S., Erşahin, S. and Özkan, A.İ., 2011. Spatial variation of soil physical properties in adjacent alluvial and colluvial soils under Ustic moisture regime. Hydrology and Earth System Sciences Discussion. 2011. 8, 4261–4280. doi:10.5194/hessd-8-4261-2011.
  • Sağlam, M., 2013. Çok değişkenli istatistiksel yöntemler ile toprak özelliklerinin gruplandırılması. Toprak Su Dergisi. 2013. 2. Sağlam, M., Dengiz, O., Özyazıcı, M.A., Erkoçak, A. ve Türkmen, F., 2014. Faktör analizi ile minimum veri setinin oluşturulması ve haritalanması: Samsun ili örneği. Ege Üniv. Ziraat Fak. Dergisi. 2014. 51(2): 133-144.
  • Sharma, S., 1996. Applied Multivariate Techniques. John Wileyand Sons Inc., New York.
  • Schafer, W.M. and Singer, M.J., 1976. A new method of measuring shrink-swell potential using soil pastes. Soil Sci. Soc. Am. J. 1976. 40(5): 805–806.
  • Schmitz, R.M., Schroeder, C., Charlier, R., 2004. Chemo–mechanical interactions in clay: a correlation between clay mineralogy and Atterberg limits. Appl. Clay Sci. 2004. 26, pp. 351-358.
  • Schoeneberger, P.J., 2012. Field book for describing and sampling soils: Government Printing Off. 2012. Shukla, M.K., Lal, R., Ebinger, M., 2006. Determining soil quality indicators by factor analysis. Soil & Tillage Research. 2006. 87, 194–204.
  • Skempton, A.W., 1953. The Colloidal Activity of Clays. Proceedings of the 3rd International Conference of Soil Mechanics and Foundation Engineering, Zurich. 1953. 1, pp. 57-61.
  • Soil Survey Staff, 2014. Keys to Soil Taxonomy, Washington, DC: USDA Nat. Resour. Conserv. Serv., 2014.
  • Tabachnick, B.G. and Fidell, L.S.,2007. Using Multivariate Statistics. Boston: Pearson Edu Inc. 2007.
  • Thompson, B., 2004. Exploratory and confirmatory factor analysis: understanding concepts and applications. Washington, DC: American Psychological Association. 2004.
  • van Tol, J.J., Le Roux, P.A.L. and Hensley, M., 2012. Pedotransfer functions to determine water conducting macroporosity in South African soils. Water Science and Tecnology. 2012. 65 (3) 550-557.
  • van Tol, J.J., Le Roux., P.A.L., 2019. Hydropedological grouping of South African soil form. South African Journal of Plant and Soil, 2019. 36:3, 233-235, doi:10.1080/02571862.2018.1537012 .
  • Velicer, W.F. and Jackson, D.N., Component Analysis Versus Common Factor Analysis Some Further Observations. Multivariate Behav. Research. 1990. 25(1), 97-114.
  • van Tol, J.J., Lorentz, S.A., 2018. Hydropedological interpretation of regional soil information to conceptualize groundwater–surface water interactions. Vadose Zone J. 2018. 17: 170097. doi:10.2136/vzj2017.05.0097.
  • Virto, I., 2011. Gartzia-Bengoetxea N and Fernandez-Ugalde O. Role of organic matter and carbonates in soil aggregation estimated using laser diffractometry. Pedosphere. 2011. 21: 566–572.
  • Walker, P.J., 1995. Strength, Durability and Shrinkage Characteristics of Cement Stabilised Soil Blocks. Cement & Concrete Comp. 1995. 17, 301-310. 0958-9465(95)00019-4.
  • Watson, K.W., Luxmoore, R.J., 1986. Estimating macroporosity in a Forest watershed by use of a tension infiltrometer. SSSAJ. 1986. 50: 578–582.
  • White, R.E., 1985. The influence of macropores on the transport of dissolved and suspended matter through soil. Adv. Soil Sci. 1985. 3: 95–120. doi:10.1007/978-1-4612-5090-6_3. Williams, B., Onsman, A. and Brown, T., 2010. Exploratory factor analysis: A five-step guide for novices. J. of Emergency Primary Health Care (JEPHC). 2010. Vol. 8, Issue 3.
  • Wood, E.F., 1999. The role of lateral flow: Over- or underrated, in Integrating Hydrology, Ecosystem Dynamics, and Biogeochemistry in Complex Landscapes, edited by J. D. Tenhunen and P. Kabat. 1999. pp. 197– 215, John Wiley, Hoboken, N. J.
  • Wu, G.L., Liu, Y., Yang, Z., Cui, Z., Deng, L., Chang, X.F. and Shi, Z.H., 2017. Root channels to indicate the increase in soil matrix water infiltration capacity of arid reclaimed mine soils. Journal of Hydrology. 2017. 546 (2017) 133–139.
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Gülay Karahan 0000-0003-1285-6546

Proje Numarası 2233/2012_12
Yayımlanma Tarihi 15 Şubat 2021
Kabul Tarihi 13 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 36 Sayı: 1

Kaynak Göster

APA Karahan, G. (2021). Evaluation of soil hydropedological properties by factor analysis in gypsic ustorthent and typic ustifluent. Anadolu Tarım Bilimleri Dergisi, 36(1), 93-103.
Online ISSN: 1308-8769