Research Article
BibTex RIS Cite

GİYİLEBİLİR BİOELEKTRİK İMPEDANS ÖLÇÜM CİHAZININ GEÇERLİLİK VE GÜVENİRLİĞİNİN ARAŞTIRILMASI

Year 2019, Volume: 10 Issue: 1, 44 - 55, 19.04.2019

Abstract

Vücut kompozisyonun değerlendirilmesi ve izlenmesi sağlık
açısından önemlidir. Gelecekte vücut kompozisyonunu ölçen ve takip eden
cihazların daha yaygın kullanılacağına inanılmaktadır.  Bu çalışmanın amacı bant olarak tasarlanan
giyilebilir biyoelektrik empedans ölçüm cihazının, güvenilirliğini ve
geçerliliğini araştırmak amacıyla laboratuvar tipi biyoelektrik empedans cihazı
ile karşılaştırmaktır. Bu çalışma
tekrarlanan ölçümlerden oluşan bir laboratuvar çalışmasıdır.  Çalışmaya 199 erkek, 123 kadın toplamda 322
sağlıklı kişi katılmıştır. Katılımcıların vücut kompozisyonları laboratuvar
tipi biyoelektrik empedans cihazı ile ölçülerek kaydedildi. Daha sonra
katılımcıların vücut kompozisyonları giyilebilir biyoelektrik empedans cihazı
ile üç kez ölçülmüş ve veriler kaydedilmiştir. Hem laboratuvar tipi cihaz hem de giyilebilir ölçüm cihazı ile
yapılan ölçümlerin sonuçları birbiriyle çok yüksek derecede korelasyon
göstermiştir. Erkeklerde, kadınlarda ve tüm grupta iki cihazın yağ kütle
ölçümleri arasında anlamlı fark bulunmamıştır. Kas kütlesi verileri
değerlendirildiğinde, erkeklerde ve tüm grupta iki cihazın ölçümleri arasında
anlamlı bir fark bulunmazken, kadınlarda anlamlı bir fark görülmüştür (p <0,001). Giyilebilir ölçüm cihazı, laboratuvar
tipi biyoelektrik empedans cihazı ile karşılaştırıldığında, yağ kütlesi
ölçümleri geçerli sonuçlar vermiştir. Kas kütlesi ölçümlerinde ise, sadece
kadınların ölçümleri arasında bir farklılık bulunmuştur. Giyilebilir
biyoelektrik empedans ölçüm cihazları güvenilirliği değerlendirildiğinde,
cihazın güvenilir sonuçlar verdiği görülmüştür. Bu nedenle, cihazın vücut
kompozisyonunu ölçme ve takip etme açısından faydalı olacağı sonucuna
varılmıştır.

References

  • Freedman DS, Mei Z, Srinivasan SR, et al. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. The J Pediatr. 2007;150(1):12-7. e2.
  • Grundy SM, Blackburn G, Higgins M, et al. Physical activity in the prevention and treatment of obesity and its comorbidities: evidence report of independent panel to assess the role of physical activity in the treatment of obesity and its comorbidities. Med Sci Sports Exerc. 1999;31(11):1493-500.
  • Sinning WE. Body composition and athletic performance. Limits of human performance The academy papers. 1985;18:45-56.
  • Buckinx F, Reginster JY, Dardenne N, et al. Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptiometry: a cross-sectional study. BMC Musculoskelet Disord. 2015;16:60.
  • Finn KJ, Saint-Maurice PF, Karsai I, et al. Agreement Between Omron 306 and Biospace InBody 720 Bioelectrical Impedance Analyzers (BIA) in Children and Adolescents. Res Q Exerc Sport. 2015;86 Suppl 1:S58-65.
  • Tompuri TT, Lakka TA, Hakulinen M, et al. Assessment of body composition by dual-energy X-ray absorptiometry, bioimpedance analysis and anthropometrics in children: the Physical Activity and Nutrition in Children study. Clin Physiol Funct Imaging. 2015;35(1):21-33.
  • Wang L, Hui SS. Validity of Four Commercial Bioelectrical Impedance Scales in Measuring Body Fat among Chinese Children and Adolescents. Biomed Res Int. 2015;2015:614858.
  • Gray DS, Bray GA, Gemayel N, et al. Effect of obesity on bioelectrical impedance. Am J Clin Nutr. 1989;50(2):255-60.
  • Jonas S, Phillips EM. ACSM's exercise is medicineTM: A clinician's guide to exercise prescription: Lippincott Williams & Wilkins; 2012.
  • Franklin NC, Lavie CJ, Arena RA. Personal health technology: a new era in cardiovascular disease prevention. Postgrad med. 2015;127(2):150-8.
  • Reyes-Ortiz J-L, Oneto L, Samà A, et al. Transition-aware human activity recognition using smartphones. Neurocomputing. 2016;171:754-67.
  • Brodie MA, Lord SR, Coppens MJ, et al. Eight-week remote monitoring using a freely worn device reveals unstable gait patterns in older fallers. IEEE Trans Biomed Eng. 2015;62(11):2588-94.
  • Wang JB, Cadmus-Bertram LA, Natarajan L, et al. Wearable sensor/device (Fitbit One) and SMS text-messaging prompts to increase physical activity in overweight and obese adults: a randomized controlled trial. Telemed J E Health. 2015;21(10):782-92.
  • Aandstad A, Holtberget K, Hageberg R, et al. Validity and reliability of bioelectrical impedance analysis and skinfold thickness in predicting body fat in military personnel. Mil Med. 2014;179(2):208-17.
  • In body Co. Ltd. Inbody Co.Ltd. In body Wearable Instruction Manual , Korea : In body Co. Ltd; 2015.
  • Donner A, Eliasziw M. Sample size requirements for reliability studies. Statistics in medicine, 1987;6(4):441-448.
  • Sherman NW. Statistics in Kinesiology . William J. Vincent, Brigham Young University, and Joseph P. Weir, Des Moines University, 2015, Champaign, IL: Human Kinetics, 2012. Maughan R. An evaluation of a bioelectrical impedance analyser for the estimation of body fat content. Br J Sports Med. 1993;27(1):63-6.
  • Biaggi RR, Vollman MW, Nies MA, et al. Comparison of air-displacement plethysmography with hydrostatic weighing and bioelectrical impedance analysis for the assessment of body composition in healthy adults. Am J Clin Nutr. 1999;69(5):898-903.
  • Heyward VH, Wagner DR. Applied body composition assessment: Human Kinetics, 2004.
  • Collings PJ, Westgate K, Väistö J, et al. Cross-sectional associations of objectively-measured physical activity and sedentary time with body composition and cardiorespiratory fitness in mid-childhood: the PANIC study. Sports Med. 2017;47(4):769-80.

VALIDITY AND RELIABILITY OF THE WEARABLE BIOELECTRICAL IMPEDANCE MEASURING DEVICE

Year 2019, Volume: 10 Issue: 1, 44 - 55, 19.04.2019

Abstract

Assessing and monitoring body composition is important for
health. It is believed that in the future, wearable devices measuring the body
composition, will be more common. The purpose of this study is to compare a
wearable bioelectrical impedance measuring device, designed as a band, with a
laboratory type of bioelectrical impedance device in order to investigate its
reliability and validity. A total of 322 healthy people, 199 men, and 123 women
participated in the study.  The
participants’ body compositions were measured with the laboratory type of
bioelectrical impedance device and recorded. Following these measurements,
participants’ body compositions were measured three times with the wearable
bioelectrical impedance measuring device and data were recorded. The results of the measurements by
both the laboratory type device and the wearable measuring device demonstrated
a very high degree of correlations with each other. There were no significant
differences between two devices’ fat mass measurements in men, in women and in
the whole group. When muscle mass data were evaluated, there were no significant
differences between two devices’ measurements in men and in the whole group,
but there was a significant difference in women (p < .001). When wearable
measuring device was compared with laboratory type of bioelectrical impedance
device, fat mass measurement results were valid. However, in muscle mass
measurements, there was a difference in women. When the wearable bioelectrical
impedance measuring device’s reliability was evaluated, it was demonstrated
that the device yielded valid results. Therefore, it is concluded that the
device will be useful for self-monitoring the body composition.

References

  • Freedman DS, Mei Z, Srinivasan SR, et al. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. The J Pediatr. 2007;150(1):12-7. e2.
  • Grundy SM, Blackburn G, Higgins M, et al. Physical activity in the prevention and treatment of obesity and its comorbidities: evidence report of independent panel to assess the role of physical activity in the treatment of obesity and its comorbidities. Med Sci Sports Exerc. 1999;31(11):1493-500.
  • Sinning WE. Body composition and athletic performance. Limits of human performance The academy papers. 1985;18:45-56.
  • Buckinx F, Reginster JY, Dardenne N, et al. Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptiometry: a cross-sectional study. BMC Musculoskelet Disord. 2015;16:60.
  • Finn KJ, Saint-Maurice PF, Karsai I, et al. Agreement Between Omron 306 and Biospace InBody 720 Bioelectrical Impedance Analyzers (BIA) in Children and Adolescents. Res Q Exerc Sport. 2015;86 Suppl 1:S58-65.
  • Tompuri TT, Lakka TA, Hakulinen M, et al. Assessment of body composition by dual-energy X-ray absorptiometry, bioimpedance analysis and anthropometrics in children: the Physical Activity and Nutrition in Children study. Clin Physiol Funct Imaging. 2015;35(1):21-33.
  • Wang L, Hui SS. Validity of Four Commercial Bioelectrical Impedance Scales in Measuring Body Fat among Chinese Children and Adolescents. Biomed Res Int. 2015;2015:614858.
  • Gray DS, Bray GA, Gemayel N, et al. Effect of obesity on bioelectrical impedance. Am J Clin Nutr. 1989;50(2):255-60.
  • Jonas S, Phillips EM. ACSM's exercise is medicineTM: A clinician's guide to exercise prescription: Lippincott Williams & Wilkins; 2012.
  • Franklin NC, Lavie CJ, Arena RA. Personal health technology: a new era in cardiovascular disease prevention. Postgrad med. 2015;127(2):150-8.
  • Reyes-Ortiz J-L, Oneto L, Samà A, et al. Transition-aware human activity recognition using smartphones. Neurocomputing. 2016;171:754-67.
  • Brodie MA, Lord SR, Coppens MJ, et al. Eight-week remote monitoring using a freely worn device reveals unstable gait patterns in older fallers. IEEE Trans Biomed Eng. 2015;62(11):2588-94.
  • Wang JB, Cadmus-Bertram LA, Natarajan L, et al. Wearable sensor/device (Fitbit One) and SMS text-messaging prompts to increase physical activity in overweight and obese adults: a randomized controlled trial. Telemed J E Health. 2015;21(10):782-92.
  • Aandstad A, Holtberget K, Hageberg R, et al. Validity and reliability of bioelectrical impedance analysis and skinfold thickness in predicting body fat in military personnel. Mil Med. 2014;179(2):208-17.
  • In body Co. Ltd. Inbody Co.Ltd. In body Wearable Instruction Manual , Korea : In body Co. Ltd; 2015.
  • Donner A, Eliasziw M. Sample size requirements for reliability studies. Statistics in medicine, 1987;6(4):441-448.
  • Sherman NW. Statistics in Kinesiology . William J. Vincent, Brigham Young University, and Joseph P. Weir, Des Moines University, 2015, Champaign, IL: Human Kinetics, 2012. Maughan R. An evaluation of a bioelectrical impedance analyser for the estimation of body fat content. Br J Sports Med. 1993;27(1):63-6.
  • Biaggi RR, Vollman MW, Nies MA, et al. Comparison of air-displacement plethysmography with hydrostatic weighing and bioelectrical impedance analysis for the assessment of body composition in healthy adults. Am J Clin Nutr. 1999;69(5):898-903.
  • Heyward VH, Wagner DR. Applied body composition assessment: Human Kinetics, 2004.
  • Collings PJ, Westgate K, Väistö J, et al. Cross-sectional associations of objectively-measured physical activity and sedentary time with body composition and cardiorespiratory fitness in mid-childhood: the PANIC study. Sports Med. 2017;47(4):769-80.
There are 20 citations in total.

Details

Primary Language English
Journal Section Hareket ve Antrenman Bilimleri
Authors

Egemen Mancı 0000-0001-8965-4884

Hikmet Gümüş 0000-0001-7671-4868

Berkant Muammer Kayatekin This is me 0000-0003-2333-089X

Publication Date April 19, 2019
Published in Issue Year 2019 Volume: 10 Issue: 1

Cite

APA Mancı, E., Gümüş, H., & Kayatekin, B. M. (2019). VALIDITY AND RELIABILITY OF THE WEARABLE BIOELECTRICAL IMPEDANCE MEASURING DEVICE. Spor Ve Performans Araştırmaları Dergisi, 10(1), 44-55.