Research Article
BibTex RIS Cite

Content Analysis about Usage of R Programming Language in Quality Control Charts

Year 2019, Volume: 13 Issue: 19, 1390 - 1429, 30.09.2019
https://doi.org/10.26466/opus.589423

Abstract

Although there are various methods that help
improve quality in statistical process control, quality control charts are
considered to be the most important methods available. The superiority of these
charts compared to other methods is that they are easy to use, to design and
visually understandable. Observations related to the quality characteristics
determined in the quality control charts are generally followed by the creation
of package programs such as SPSS, MINITAB, STATA or programming languages such
as MATLAB, C++. Recently, however, it has been determined that the use of R
programs in the creation of quality control charts, the detection of
uncontrolled signals in these charts, in the diagnosis of errors and similar
areas is rapidly becoming widespread and a lot of studies are conducted in
foreign literature. In this context, it was aimed to make a research about the
use of R program in quality control charts. In this way, it is considered that
this study will contribute to the quality control employees and the domestic
and foreign literature. In this study, four books and thirty-six articles were
examined according to content analysis method according to seven criteria. As a
result of the study; (1) in the books and articles examined in relation to the
use of the R program in control charts, theoretical issues are emphasized,
applied issues are in the minority, (2) most of the R packages used in the
design of quality control charts is qcc package (3) mainly used control graphs
are multivariate control graphs in theory development and applications, and
most commonly used control charts were Hotelling T², MCUSUM and MEWMA control
charts, and (4) control charts were measured using ARL. (5) mainly used
artificial data in applications with control charts, (6) Monte Carlo simulation
method is preferred in simulation studies, (7) it is concluded that a wide
variety of control charts suggested for various situations are included in the
literature.

References

  • Alfaro, E., Alfaro, J. L., Gámez, M. ve García, N. (2009). A boosting approach for understanding out-of-control signals in multivariate control charts. International Journal of Production Research, 47(24), 6821-6834.
  • Alfaro, E., Gamez, M. ve Garcia, N. (2006). Adabag: Implements AdaBoost.M1 and bagging [online]. R package version 1.0. https://cran.r-project.org/web/packages/available_packages_ by_name.html, Erişim tarihi:01 Haziran 2019.
  • Alfaro, J. L. ve Ortega, J. F. (2009). A comparison of robust alternatives to Hotelling’s T^2 control chart. Journal of Applied Statistics, 36(12), 1385-1396.
  • Andrejıová, M. ve Kımáková, Z. (2012). The open source software “R” in the statistical quality control. International Journal of Engineering, 3, 17-25.
  • Arslan, İ. (2017). R ile istatistiksel programlama. İstanbul: Pusula Yayınları.
  • Assareh, H., Noorossana, R. ve Mengersen, K. L. (2013). Bayesian change point estimation in Poisson-based control charts. Journal of Industrial Engineering International. 2(2), 12-23.
  • Bell, R. C., Jones-Farmer, L. A. ve Billor, N. (2014). A distribution-free multivariate Phase I location control chart for subgrouped data from elliptical distributions. Technometrics, 56(4), 528-538.
  • Birgören, B. (2015). İstatistiksel kalite kontrolü. Ankara: Nobel Akademik Yayıncılık.
  • Bush, H. M., Chongfuangprinya, P., Chen, V. C. P., Sukchotrat, T. ve Kim, S. B. (2010). Nonparametric multivariate control charts based on a linkage ranking algorithm. Quality and Reliability Engineering International, 26, 663-675.
  • Büyüköztürk, Ş. ve diğerleri (2010). Bilimsel araştırma yöntemleri, 7. Baskı, Ankara: PEGEM Akademi.
  • Cano, E. L., Moguerza Mariano J. M. ve Corcoba, P. (2015). Quality control with R an ISO standards approach. New York Dordrecht, Springer Cham Heidelberg, London.
  • Marchant, C., Leiva, V., Cysneiros, F. J. A. ve Liu, S. (2018). Robust multivariate control charts based on Birnbaum–Saunders distributions. Journal of Statistical Computation and Simulation, 88(1), 182-202.
  • Capizzi, G. ve Masarotto, G. (2011). A least angle regression control chart for multidimensional data. Technometrics, 53(3), 285-296.
  • Chananet, C., Sukparungsee, S. ve Areepon, Y. (2014). The ARL of EWMA chart for monitoring ZINB model using Markov chain approach. International Journal of Applied Physics and Mathematics, 4(4). 236-239.
  • Chiang, J. Y., Liob, Y. L. ve Tsaic, T. R. (2017). MEWMA control chart and process capability indices for simple linear profiles with within-profile autocorrelation. Quality and Reliability Engineering International, 33, 1083–1094.
  • Capizzi, G. ve Masarotto, G. (2016). Efficient control chart calibration by simulated stochastic approximation. IIE Transactions, 48(1), 57-65.
  • Cohen, L., Manion, L. ve Morrison, K. (2007). Research methods in education (6th Edition), London: Routledge Falmer.
  • Capizzi, G. ve Masarotto, G. (2010). Evaluation of the run-length distribution for a combined Shewhart-EWMA control chart. Stat, 20, 23–33.
  • Cano, E. L. (2011). An introduction to R for quality control. Newyork: Universidad Rey Juan Carlos Publication.
  • Farkas, K. (2015). CUSUM Anomaly Detection. Measurement Lab. 1-25.
  • Gandy, A. ve Kvaløy, J. T. (2013). Guaranteed conditional performance of control charts via bootstrap methods. Scandinavian Journal of Statistics, 40, 647–668.
  • Gastwirth, J. L., Gel, Y. R., Wallace Hui, W. L., Miao, W. ve Noguchi, K. (2015). Lawstat: Tools for Biostatistics, Public Policy, and Law. R package version 2.5. https://cran.r-project.org/web/packages/ available_packages_by_name.html, Erişim tarihi: 01 Haziran 2019.
  • Gross, J. ve Ligges, U. (2015). Nortest: Tests for Normality. R package version 1.0-3. https://cran.r-project.org/web/packages/available _packages_by_name.html, Erişim tarihi: 01 Haziran 2019.
  • Giner-Bosch, V., Cabanos, C. ve Debón-Aucejo, A. (2016). On the use of statistical process control in monitoring mortality: An application to European countries. Estadística Española, 58(191) 265-275.
  • Henning, E., Maia, M. T., Walter, O. M. F. C., Konrath, A. C. ve Alves, C. C. (2014) Application of Hotelling’s T² control chart for a machining process of the inside diameter of a steel cylinder. GEPROS (Gestão da Produção, Operações e Sistemas, Bauru), 9(2), 155-167.
  • Höhle M. (2007). Surveillance: An R package for the monitoring of infectious diseases. Comput Stat, 22, 571–582. https://cran.r-project.org/web/packages/available_packages_by_name.html, Erişim tarihi: 01 Haziran 2019.
  • Işığıçok, E. (2012). Toplam kalite yönetimi bakış açısıyla istatistiksel kalite kontrol, Bursa: Ezgi Yayınevi.
  • Kuvattana, S., Busababodhin, P., Areepong, Y. ve Sukparungsee, S. (2016). Bivariate copulas on the exponentially weighted moving average control chart. Journal of Science Technology, 38 (5), 569-574.
  • Knoth, S. (2015). Run length quantiles of EWMA control charts monitoring normal mean or/and variance. International Journal of Production Research, 53(15), 4629–4647.
  • Konrath, A. C., Walter, O. M. F. C., Henning, E., Alves, C. C. ve Samohyl, R. W. (2013). Applications in teaching statistical quality control with different R interfaces. 2013 IEEE Global Engineering Education Conference (EDUCON), 146.
  • Lee, Y. H. ve Von Davier, A. A. (2013). Monitoring scale scores over time via quality control charts, model-based approaches and time series techniques. Psychometrika, 78(3), 557–575.
  • Leiva, V., Hernandez, H. ve Riquelme, M. (2006). A new package for the Birnbaum–Saunders distribution. R News, 6(4), 35–40.
  • Li, T. ve Çavuşgil, S. T. (1995). A classification and assessment of research streams in international marketing. International Business Review, 4(3), 251-77.
  • Lio, Y. L. ve Park, C. (2010). A bootstrap control chart for inverse Gaussian percentiles. Journal of Statistical Computation and Simulation, 80(3), 287–299.
  • Lio, Y. L. ve Park, C. (2008). Research a bootstrap control chart for birnbaum–saunders percentiles. Quality and Reliability Engineeiıng International, 24, 585–600.
  • McCarthy, D. J., Campbell, K. R., Lun, A. T. L. ve Wills, Q. F. (2017). Scater: Pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics, 33(8), 1179–1186.
  • Mcneil, A. ve Ulman, S. (2013) QRMlib: Provides R-language code to examine Quantitative Risk Management concepts. R package version 1.4.5.1, https://cran.r-project.org/web/packages/ available_packages_by_name.html Erişim tarihi: 01 Haziran 2019.
  • Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A. ve Leisch, F. (2014). e1071: Misc Functions of the Department of Statistics, TU Wien. R package version 1.6-4. https://cran.r-project.org/web/packages/available_packages_by_name.html Erişim tarihi: 01 Haziran 2019.
  • Morton, A., Gatton, M., Tong, E. B. A, Clements, A. (2007). New control chart methods for monitoring MROs in Hospitals. Australian Infection Control, 12(1), 16-18.
  • Orçanlı, K. (2017). Çok değişkenli kontrol grafikleri ve yapay sinir ağları yöntemi ile döküm sanayinde bir istatistiksel süreç kontrolü uygulaması. Yayımlanmamış Doktora Tezi, Atatürk Üniversitesi, Sosyal Bilimler Enstitüsü, Erzurum.
  • Orçanlı, K., Oktay, E. ve Birgören, B. (2015). Çok değişkenli kontrol kartları örüntü tanıma literatüründe bir araştırma. Sosyal Bilimler Araştırma Dergisi, 4(2), 23–42.
  • Öztürk, A. (2009). Kalite yönetimi ve planlaması. Bursa:Ekin Yayınları.
  • Phaladiganon, P., Kim, S. B., Chen, V. C. P., Baek, J. G. ve Park, S. K. (2011). Bootstrap-based T^2 multivariate control charts, Communications in Statistics—Simulation and Computation, 40(5), 645-662.
  • Plummer, M., Best, N., Cowles, K. ve Vines, K. (2010). The Coda package: Output Analysis and Diagnostics for MCMC, R Package Version 0.13-2. https://cran.r-project.org/web/packages/available_ packages _by_name.html Erişim tarihi: 01 Haziran 2019.
  • Rashid, M., Riaz, M. ve Does, R. J. M. M. (2012). Efficient power computation for R out of M runs rules schemes. Comput Stat, 28, 667–681.
  • Radziwill, N. (2015). X-Bar/R Control Charts, http://qualityand innovation.com, Erişim tarihi:01 Haziran 2019.
  • Qiu, P. (2014). Introduction to statistical process control, Boca Raton:Chapman & Hall/CRC.
  • Saghir, A. ve Lin, Z. (2013). Control chart for monitoring multivariate COM-Poisson attributes, Journal of Applied Statistics, 41(1), 200-214.
  • Santos-Fernández, E. (2012). Multivariate statistical quality control using R. Springer New York Heidelberg Dordrecht London.
  • Satman, M. H. (2018). R ile programlama. İstanbul:Türkmen Kitapevi.
  • Scrucca, L. (2004). qcc: An R package for quality control charting and statistical process control. R News 4(1),1117.
  • Santos-Fernandez, E. (2013). MSQC: Multivariate Statistical Quality Control. R package version 1.0.0, https://cran.r-project.org/web-/packages/available_packages_by_name.html Erişim tarihi: 01 Haziran 2019.
  • Sündüs, D. A. (2015). A real application on economic design of control charts with R-edcc package. The International Journal of Engineering and Science (IJES), 4(10), 54-65.
  • Vargas, M., Alfaro, J. L. ve Mondéjar, J. (2009). On the run length of a state-space control chart for multivariate autocorrelated data. Communications Simulation and Compuin Statistics Tation, 38(9), 1823-1833.
  • Veljkovic, K., Elfaghihe, H. ve Jevremovic, V. (2015). Economic statistical design of Xbar control chart for non-normal symmetric distribution of quality characteristic. The International Conference 13th Serbian Mathematical Congress-2014, 29(10), 2325-2338.
  • Variyath, A. M. ve Vattathoor, J. (2013). Robust control charts for monitoring process mean of Phase-I multivariate individual observations. Journal of Quality and Reliability Engineering, 1-14.
  • Veljkovic, K. (2019). Xbar control chart for non-normal symmetric Metodoloˇski zvezki, 13(2), 87-100.
  • Vives-Mestres, M., Daunis-i-Estadella, J. ve Martin-Fernandez, J.A. (2015). Signal interpretation in Hotelling's T² control chart for compositional data. IIE Transactions, 48(7), 661-672.
  • Varadhan, R. ve Gilbert, P. (2009). BB: An R package for solving a large system of nonlinear equations and for optimizing a high-dimensional nonlinear objective function. Journal of Statistical Software, 32, 1–26.
  • Van den Boogaart, G. K., Tolosana, R. ve Bren M. (2014). Compositions: Compositional Data Analysis, R package version 1.40-1. https://cran.r-project.org/web/packages/ available_packages_ by_ name.html
  • Wheeler, B. (2008). SuppDists: Supplementary distributions, R package version 1.1-2, https://cran.r-project.org/web/packages/ available_packages_by_name.html, Erişim tarihi:01 Haziran 2019.
  • Witkovsk, V. ve Savin, A. (2005). Tdist: Distribution of a linear combination of independent Student’s t-variables. R package version 0.1.1. https://cran.r-project.org/web/packages/available_ packages_ by_name.html Erişim tarihi: 01 Haziran 2019.
  • Zu, W. ve Park, C. (2013). An R package for the economic design of the control chart. Journal of Statistical Software, 52(9), 1-24.

Kalite Kontrol Grafiklerinde R Programlama Dilinin Kullanımı İle İlgili İçerik Analizi

Year 2019, Volume: 13 Issue: 19, 1390 - 1429, 30.09.2019
https://doi.org/10.26466/opus.589423

Abstract

İstatistiksel süreç
kontrolünde kalite iyileştirmeye yardımcı olan çeşitli yöntemler bulunmasına
rağmen, kalite kontrol grafikleri mevcut yöntemlerin en önemlisi olarak kabul
edilir. Bu grafiklerin diğer yöntemlere göre üstün tarafları tasarlanmasının,
kullanımının ve görsel olarak anlaşılmasının kolay olmasıdır. Kalite kontrol
grafiklerinde belirlenen kalite karakteristikleri ile ilgili gözlemler,
genellikle SPSS, MINITAB, STATA gibi hazır paket programlarında ya da MATLAB,
C++ gibi programlama dilleri ile oluşturulan grafiklerde takip edilmektedir.
Ancak son zamanlarda R programlama dilinin de kalite kontrol grafiklerinin
oluşturulmasında, kontrol dışı sinyallerin tespiti ile hata teşhisinde ve
benzeri alanlarda kullanımının hızla yaygınlaştığı ve yabancı literatürde
oldukça fazla çalışmanın yapıldığı tespit edilmiştir. Bu kapsamda, R programlama
dilinin kalite kontrol grafiklerinde kullanımı ile ilgili olarak içerik analizi
yöntemi kullanılarak bir araştırma yapılmasına ihtiyaç duyulmuştur. Bu amaçla
yapılan çalışmanın, kalite kontrolünde çalışanlar ile yerli ve yabancı
literatüre katkı sağlayacağı değerlendirilmektedir. Yapılan çalışmada; dört
adet kitap ve 36 adet makale, içerik analizi yöntemi kapsamında yedi ölçüte
göre oluşturulan araştırma ölçeğine uygun olarak incelenmiştir. Çalışmanın
sonucunda; (1) R programlama dilinin kontrol grafiklerinde kullanımı ile ilgili
olarak incelenen kitaplarda ve makalelerde teorik konulara ağırlık verildiği,
uygulamalı konuların azınlıkta olduğu, (2) kalite kontrol grafiklerinin dizayn
edilmesinde en çok R paketlerinden “qcc” paketinin kullanıldığı, ancak diğer
paketlerden de ihtiyaç duyulan fonksiyonların kullanıldığı, (3) yapılan
uygulamalar ile teori geliştirmede ağırlıklı olarak çok değişkenli kontrol
grafiklerinin kullanıldığı ve kullanılan kontrol grafiklerinden ise en çok  Hotelling T², MCUSUM ve MEWMA kontrol
grafikleri ile uygulamaların yapıldığı, (4) kontrol grafiklerinin
performansının ölçülmesinde ve performanslarının karşılaştırılmasında ARL
değerlerinin kullanıldığı, (5) kontrol grafikleri ile yapılan uygulamalarda
ağırlıklı olarak yapay verilerin kullanıldığı, (6) simülasyon çalışmalarında
Monte Carlo simülasyon yönteminin tercih edidiği ve (7) çeşitli durumlar için önerilen çok çeşitli kontrol grafiğinin literetürde
yer aldığı sonuucuna ulaşılmıştır. 

References

  • Alfaro, E., Alfaro, J. L., Gámez, M. ve García, N. (2009). A boosting approach for understanding out-of-control signals in multivariate control charts. International Journal of Production Research, 47(24), 6821-6834.
  • Alfaro, E., Gamez, M. ve Garcia, N. (2006). Adabag: Implements AdaBoost.M1 and bagging [online]. R package version 1.0. https://cran.r-project.org/web/packages/available_packages_ by_name.html, Erişim tarihi:01 Haziran 2019.
  • Alfaro, J. L. ve Ortega, J. F. (2009). A comparison of robust alternatives to Hotelling’s T^2 control chart. Journal of Applied Statistics, 36(12), 1385-1396.
  • Andrejıová, M. ve Kımáková, Z. (2012). The open source software “R” in the statistical quality control. International Journal of Engineering, 3, 17-25.
  • Arslan, İ. (2017). R ile istatistiksel programlama. İstanbul: Pusula Yayınları.
  • Assareh, H., Noorossana, R. ve Mengersen, K. L. (2013). Bayesian change point estimation in Poisson-based control charts. Journal of Industrial Engineering International. 2(2), 12-23.
  • Bell, R. C., Jones-Farmer, L. A. ve Billor, N. (2014). A distribution-free multivariate Phase I location control chart for subgrouped data from elliptical distributions. Technometrics, 56(4), 528-538.
  • Birgören, B. (2015). İstatistiksel kalite kontrolü. Ankara: Nobel Akademik Yayıncılık.
  • Bush, H. M., Chongfuangprinya, P., Chen, V. C. P., Sukchotrat, T. ve Kim, S. B. (2010). Nonparametric multivariate control charts based on a linkage ranking algorithm. Quality and Reliability Engineering International, 26, 663-675.
  • Büyüköztürk, Ş. ve diğerleri (2010). Bilimsel araştırma yöntemleri, 7. Baskı, Ankara: PEGEM Akademi.
  • Cano, E. L., Moguerza Mariano J. M. ve Corcoba, P. (2015). Quality control with R an ISO standards approach. New York Dordrecht, Springer Cham Heidelberg, London.
  • Marchant, C., Leiva, V., Cysneiros, F. J. A. ve Liu, S. (2018). Robust multivariate control charts based on Birnbaum–Saunders distributions. Journal of Statistical Computation and Simulation, 88(1), 182-202.
  • Capizzi, G. ve Masarotto, G. (2011). A least angle regression control chart for multidimensional data. Technometrics, 53(3), 285-296.
  • Chananet, C., Sukparungsee, S. ve Areepon, Y. (2014). The ARL of EWMA chart for monitoring ZINB model using Markov chain approach. International Journal of Applied Physics and Mathematics, 4(4). 236-239.
  • Chiang, J. Y., Liob, Y. L. ve Tsaic, T. R. (2017). MEWMA control chart and process capability indices for simple linear profiles with within-profile autocorrelation. Quality and Reliability Engineering International, 33, 1083–1094.
  • Capizzi, G. ve Masarotto, G. (2016). Efficient control chart calibration by simulated stochastic approximation. IIE Transactions, 48(1), 57-65.
  • Cohen, L., Manion, L. ve Morrison, K. (2007). Research methods in education (6th Edition), London: Routledge Falmer.
  • Capizzi, G. ve Masarotto, G. (2010). Evaluation of the run-length distribution for a combined Shewhart-EWMA control chart. Stat, 20, 23–33.
  • Cano, E. L. (2011). An introduction to R for quality control. Newyork: Universidad Rey Juan Carlos Publication.
  • Farkas, K. (2015). CUSUM Anomaly Detection. Measurement Lab. 1-25.
  • Gandy, A. ve Kvaløy, J. T. (2013). Guaranteed conditional performance of control charts via bootstrap methods. Scandinavian Journal of Statistics, 40, 647–668.
  • Gastwirth, J. L., Gel, Y. R., Wallace Hui, W. L., Miao, W. ve Noguchi, K. (2015). Lawstat: Tools for Biostatistics, Public Policy, and Law. R package version 2.5. https://cran.r-project.org/web/packages/ available_packages_by_name.html, Erişim tarihi: 01 Haziran 2019.
  • Gross, J. ve Ligges, U. (2015). Nortest: Tests for Normality. R package version 1.0-3. https://cran.r-project.org/web/packages/available _packages_by_name.html, Erişim tarihi: 01 Haziran 2019.
  • Giner-Bosch, V., Cabanos, C. ve Debón-Aucejo, A. (2016). On the use of statistical process control in monitoring mortality: An application to European countries. Estadística Española, 58(191) 265-275.
  • Henning, E., Maia, M. T., Walter, O. M. F. C., Konrath, A. C. ve Alves, C. C. (2014) Application of Hotelling’s T² control chart for a machining process of the inside diameter of a steel cylinder. GEPROS (Gestão da Produção, Operações e Sistemas, Bauru), 9(2), 155-167.
  • Höhle M. (2007). Surveillance: An R package for the monitoring of infectious diseases. Comput Stat, 22, 571–582. https://cran.r-project.org/web/packages/available_packages_by_name.html, Erişim tarihi: 01 Haziran 2019.
  • Işığıçok, E. (2012). Toplam kalite yönetimi bakış açısıyla istatistiksel kalite kontrol, Bursa: Ezgi Yayınevi.
  • Kuvattana, S., Busababodhin, P., Areepong, Y. ve Sukparungsee, S. (2016). Bivariate copulas on the exponentially weighted moving average control chart. Journal of Science Technology, 38 (5), 569-574.
  • Knoth, S. (2015). Run length quantiles of EWMA control charts monitoring normal mean or/and variance. International Journal of Production Research, 53(15), 4629–4647.
  • Konrath, A. C., Walter, O. M. F. C., Henning, E., Alves, C. C. ve Samohyl, R. W. (2013). Applications in teaching statistical quality control with different R interfaces. 2013 IEEE Global Engineering Education Conference (EDUCON), 146.
  • Lee, Y. H. ve Von Davier, A. A. (2013). Monitoring scale scores over time via quality control charts, model-based approaches and time series techniques. Psychometrika, 78(3), 557–575.
  • Leiva, V., Hernandez, H. ve Riquelme, M. (2006). A new package for the Birnbaum–Saunders distribution. R News, 6(4), 35–40.
  • Li, T. ve Çavuşgil, S. T. (1995). A classification and assessment of research streams in international marketing. International Business Review, 4(3), 251-77.
  • Lio, Y. L. ve Park, C. (2010). A bootstrap control chart for inverse Gaussian percentiles. Journal of Statistical Computation and Simulation, 80(3), 287–299.
  • Lio, Y. L. ve Park, C. (2008). Research a bootstrap control chart for birnbaum–saunders percentiles. Quality and Reliability Engineeiıng International, 24, 585–600.
  • McCarthy, D. J., Campbell, K. R., Lun, A. T. L. ve Wills, Q. F. (2017). Scater: Pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics, 33(8), 1179–1186.
  • Mcneil, A. ve Ulman, S. (2013) QRMlib: Provides R-language code to examine Quantitative Risk Management concepts. R package version 1.4.5.1, https://cran.r-project.org/web/packages/ available_packages_by_name.html Erişim tarihi: 01 Haziran 2019.
  • Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A. ve Leisch, F. (2014). e1071: Misc Functions of the Department of Statistics, TU Wien. R package version 1.6-4. https://cran.r-project.org/web/packages/available_packages_by_name.html Erişim tarihi: 01 Haziran 2019.
  • Morton, A., Gatton, M., Tong, E. B. A, Clements, A. (2007). New control chart methods for monitoring MROs in Hospitals. Australian Infection Control, 12(1), 16-18.
  • Orçanlı, K. (2017). Çok değişkenli kontrol grafikleri ve yapay sinir ağları yöntemi ile döküm sanayinde bir istatistiksel süreç kontrolü uygulaması. Yayımlanmamış Doktora Tezi, Atatürk Üniversitesi, Sosyal Bilimler Enstitüsü, Erzurum.
  • Orçanlı, K., Oktay, E. ve Birgören, B. (2015). Çok değişkenli kontrol kartları örüntü tanıma literatüründe bir araştırma. Sosyal Bilimler Araştırma Dergisi, 4(2), 23–42.
  • Öztürk, A. (2009). Kalite yönetimi ve planlaması. Bursa:Ekin Yayınları.
  • Phaladiganon, P., Kim, S. B., Chen, V. C. P., Baek, J. G. ve Park, S. K. (2011). Bootstrap-based T^2 multivariate control charts, Communications in Statistics—Simulation and Computation, 40(5), 645-662.
  • Plummer, M., Best, N., Cowles, K. ve Vines, K. (2010). The Coda package: Output Analysis and Diagnostics for MCMC, R Package Version 0.13-2. https://cran.r-project.org/web/packages/available_ packages _by_name.html Erişim tarihi: 01 Haziran 2019.
  • Rashid, M., Riaz, M. ve Does, R. J. M. M. (2012). Efficient power computation for R out of M runs rules schemes. Comput Stat, 28, 667–681.
  • Radziwill, N. (2015). X-Bar/R Control Charts, http://qualityand innovation.com, Erişim tarihi:01 Haziran 2019.
  • Qiu, P. (2014). Introduction to statistical process control, Boca Raton:Chapman & Hall/CRC.
  • Saghir, A. ve Lin, Z. (2013). Control chart for monitoring multivariate COM-Poisson attributes, Journal of Applied Statistics, 41(1), 200-214.
  • Santos-Fernández, E. (2012). Multivariate statistical quality control using R. Springer New York Heidelberg Dordrecht London.
  • Satman, M. H. (2018). R ile programlama. İstanbul:Türkmen Kitapevi.
  • Scrucca, L. (2004). qcc: An R package for quality control charting and statistical process control. R News 4(1),1117.
  • Santos-Fernandez, E. (2013). MSQC: Multivariate Statistical Quality Control. R package version 1.0.0, https://cran.r-project.org/web-/packages/available_packages_by_name.html Erişim tarihi: 01 Haziran 2019.
  • Sündüs, D. A. (2015). A real application on economic design of control charts with R-edcc package. The International Journal of Engineering and Science (IJES), 4(10), 54-65.
  • Vargas, M., Alfaro, J. L. ve Mondéjar, J. (2009). On the run length of a state-space control chart for multivariate autocorrelated data. Communications Simulation and Compuin Statistics Tation, 38(9), 1823-1833.
  • Veljkovic, K., Elfaghihe, H. ve Jevremovic, V. (2015). Economic statistical design of Xbar control chart for non-normal symmetric distribution of quality characteristic. The International Conference 13th Serbian Mathematical Congress-2014, 29(10), 2325-2338.
  • Variyath, A. M. ve Vattathoor, J. (2013). Robust control charts for monitoring process mean of Phase-I multivariate individual observations. Journal of Quality and Reliability Engineering, 1-14.
  • Veljkovic, K. (2019). Xbar control chart for non-normal symmetric Metodoloˇski zvezki, 13(2), 87-100.
  • Vives-Mestres, M., Daunis-i-Estadella, J. ve Martin-Fernandez, J.A. (2015). Signal interpretation in Hotelling's T² control chart for compositional data. IIE Transactions, 48(7), 661-672.
  • Varadhan, R. ve Gilbert, P. (2009). BB: An R package for solving a large system of nonlinear equations and for optimizing a high-dimensional nonlinear objective function. Journal of Statistical Software, 32, 1–26.
  • Van den Boogaart, G. K., Tolosana, R. ve Bren M. (2014). Compositions: Compositional Data Analysis, R package version 1.40-1. https://cran.r-project.org/web/packages/ available_packages_ by_ name.html
  • Wheeler, B. (2008). SuppDists: Supplementary distributions, R package version 1.1-2, https://cran.r-project.org/web/packages/ available_packages_by_name.html, Erişim tarihi:01 Haziran 2019.
  • Witkovsk, V. ve Savin, A. (2005). Tdist: Distribution of a linear combination of independent Student’s t-variables. R package version 0.1.1. https://cran.r-project.org/web/packages/available_ packages_ by_name.html Erişim tarihi: 01 Haziran 2019.
  • Zu, W. ve Park, C. (2013). An R package for the economic design of the control chart. Journal of Statistical Software, 52(9), 1-24.
There are 63 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Kenan Orçanlı 0000-0001-5716-4004

Publication Date September 30, 2019
Acceptance Date August 15, 2019
Published in Issue Year 2019 Volume: 13 Issue: 19

Cite

APA Orçanlı, K. (2019). Kalite Kontrol Grafiklerinde R Programlama Dilinin Kullanımı İle İlgili İçerik Analizi. OPUS International Journal of Society Researches, 13(19), 1390-1429. https://doi.org/10.26466/opus.589423