Research Article
BibTex RIS Cite

STEM Tutum ve Problem Çözmeye Yönelik Yansıtıcı Düşünme Becerisi Arasındaki İlişki

Year 2020, Volume: 16 Issue: 27, 76 - 93, 31.07.2020
https://doi.org/10.26466/opus.667004

Abstract

Bu çalışmanın amacı ortaokul öğrencilerinin STEM tutumları ile problem çözme üzerine yansıtıcı düşünme becerileri arasındaki ilişkiyi belirlemektir. Araştırmada betimsel model olan tarama modeli kullanılmıştır. Çalışmaya 576 öğrenci dahil edildi. Öğrencilerin notları açısından dağılımları incelendiğinde 140'ı 5. sınıf, 140'ı 6. sınıf, 160'ı 7. ve 136'sı 8. sınıf öğrencisi olarak değerlendirilmiştir. Bu öğrencilerin 300'ü kadın, 276'sı erkektir. Araştırmada veri toplama aracı olarak STEM Tutum Ölçeği ve Problem Çözmeye Yönelik Yansitici Düşünme Beceris Ölçeği kullanılmıştır.Araştırma sonucunda, öğrencilerin cinsiyete göre problem çözme üzerine yansıtıcı düşünme becerilerinde ve sorgulama ve akıl yürütme boyutlarında kız öğrencilerin lehine anlamlı farklılıklar bulunmuştur. Ayrıca, problem çözme ölçeğinde yansıtıcı düşünme becerisi üzerine yapılan analizlerde sorgulama ve değerlendirme boyutlarında sınıf düzeyi değişkeni açısından anlamlı farklılıklar bulunmuştur. STEM tutum puanları üzerinde yapılan analizlerde, mühendislik ve teknoloji boyutlarında cinsiyet değişkeni açısından kız öğrencilerin lehine, matematik ve 21. yüzyıl becerisi boyutlarında sınıf seviyesi değişkeni açısından anlamlı farklılıklar bulunmuştur.

References

  • Acar, D., Tertemiz, N., and Taşdemir, A. (2018). The Effects of STEM training on the academic achievement of 4th graders in science and mathematics and their views on stem training. International Electronic Journal of Elementary Education, 10(4), 505-513. doi:10.26822/iejee.2018438141
  • Aydagül, B., and Terzioğlu, T. (2014). Bilim, teknoloji, mühendislik ve matematiğin önemi. TÜSİAD Görüş Dergisi, 85, 13-19. Retrived from http:// www.stemtusiad.org/bilgi- merkezi/makaleler
  • ACTS (2007). Assessment & Teaching of 21st Century Skills. ATC21S
  • Asghar, A., Ellington, R., Rice, E., Johnson, F., and Prime, G. M. (2012). Supporting STEM education in secondary science contexts. Interdisciplinary Journal of Problem-Based Learning, 6(2), 85-125. doi:10.7771/1541-5015.1349
  • Breiner, J. M., Harkness, S. S., Johnson, C. C., and Koehler, C. M. (2012). What Is STEM?: A Discussion About Conception of STEM in Education and Partnerships. School Science and Mathematics, 112(1), 3-11. doi:10.1111/j.1949-8594.2011.00109.x
  • Brophy, S., Klein, S., Portsmore, M., and Rogers, C. (2008). Advancing engineering education in P-12 classrooms. Journal of Engineering Education, 97(3), 369-387. doi:10.1002/j.2168-9830.2008.tb00985.x
  • Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö. E., Karadeniz, Ş., and Demirel, F. (2017). Bilimsel araştırma yöntemleri (23.ed.). Ankara: Pegem Akademi.
  • Bybee, R. W. (2010). What is STEM? Science, 329, 996. doi: 10.1126/science.1194998.
  • Ceylan, S. (2014). Ortaokul fen bilimleri dersindeki asitler ve bazlar konusunda fen, teknoloji, mühendislik ve matematik (FeTeMM) yaklaşımı ile öğretim tasarımı hazırlanmasına yönelik bir çalışma [A study for preparing an instructional design based on sicence, technology, engineering and mathematics (STEM) Approach on the topics of acids and bases at secondary school science course].Master of Thesis, Uludağ Üniversitesi, Bursa.
  • Chiu, A., Price, C. A. and Ovrahim, E. (2015,April). Supporting elementary and middle school stem education at the whole school level: A review of the literature.NARST, Chicago, IL.https://www.msichicago.org/fileadmin/assets/educators/science_leadership_initiative/SLI_Lit_Review.pdf
  • Dewaters, J. and Powers, S. E. (2006). Improving science and energy literacy through project-based K-12 outreach efforts that use energy and environmental themes. Proceedings of the 113th Annual ASEE Conference & Exposition (pp.262-276). Chicago, IL. Retrived from https://peer.asee.org/158
  • Dilekli, Y., & Orakcı, Ş. Öğretmenlerin Yansıtıcı Düşünme Becerilerinin Çeşitli Değişkenlere Göre İncelenmesi. OPUS Uluslararası Toplum Araştırmaları Dergisi, 11(18), 1-1.
  • Dugger Jr,, W. E. (2010). Evolution of STEM in the United States. Retrived from http://www.iteaconnect.org/Resources/PressRoom/AustraliaPaper.pdf.
  • Gonzalez, H., and Kuenzi, J. J. (2012). Science, technology, engineering and mathematics (STEM) education: a primer.Congressional Research Service 7-5700, Washington, DC. Retrived from https://fas.org/sgp/crs/misc/R42642.pdf
  • Hmelo-Silver, C.E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235-266. doi: 10.1023/B:EDPR.0000034022.16470.f3
  • Honey, M., Pearson, G., and Schweingruber, H. (Eds.). (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research (Vol. 500). Washington, DC: National Academies Press.
  • Kızılkaya, G. ve Aşkar, P. (2010). Problem çözmeye yönelik yansıtıcı düşünme becerisi ölçeğinin geliştirilmesi. Eğitim ve Bilim, 34(154). Retrived from http://eb.ted.org.tr/index.php/EB/article/view/550
  • McClain, M. L. (2015). The effect of STEM education on mathematics achievement of fourth-grade underrepresented minority students. Doctoral Dissertation, Capella University, Minneapolis.
  • Morrison, J. (2006). Attributes of STEM education: The student, the school, the classroom. Baltimore, MD: The Teaching Institute for Excellence in STEM.
  • OECD (2005). The definition and selection of key competencies: Executive summary, Organisation for Economic Co-operation and Development. Retrived from www.oecd.org/dataoecd/47/61/35070367.pdf
  • Olivarez, N. (2012). The impact of a STEM program on academic achievement of eight grade students in a south texas middle school. Doctoral Dissertation, Texas A & M University, Texas.
  • Partnership for 21st Century Skills. (2013). Framework For 21st Century Learning. Washington,DC: Partnership for 21st Century Skills.
  • Pekbay, C. (2017). Fen, teknoloji, mühendislik ve matematik etkinliklerinin ortaokul öğrencileri üzerindeki etkileri [Effects of science technology engineering and mathematics activities on middle school students]. Doctoral Dissertation, Hacettepe Üniversitesi, Ankara.
  • Philips, S. D., Pazienza, N. J., and Ferrin, H. H. (1984). Decision-making styles and problem-solving appraisal. Journal of Counseling Psychology, 31(4), 497-502 doi: 10.1037/0022-0167.31.4.497
  • Ricks, M.M. (2006). A study of an impact of an informal science education program on middle school students’ science knowledge, science attitude, STEM high school and college course selections, and career decisions. Doctoral Disserttion, The University of Texas, Austin.
  • Roskos, K., Vukelich, C. and Risko, V. (2001). Reflection and learning to teach reading: a critical review of literacy and general teacher education studies. Journal of Literacy Research, 33 (4), 595-635. doi:10.1080/10862960109548127
  • Saleh, A. H. (2016). A proposed unit in the light of STEM approach and its effect on developing attitudes toward (STEM) and problem solving skills for primary students. International Interdisciplinary Journal of Education, 5(7), 186- 217. Retrived from http://iijoe.org/v5/IIJOE_A_09_07_05_2016.pdf
  • Sanders, M. (2009). STEM, STEM education, STEM mania. Technology Teacher, 68(4), 20–26. Retrived from https://vtechworks.lib.vt.edu/bitstream/handle/10919/51616/STEMmania.pdf?sequence
  • Savul, G. (2017, June). Performans Görevlerinin Problem Çözme Becerisine Etkisi. Master Thesis, Ankara University, Ankara.
  • Schön, D.A. (1983). The reflective practitioner: How professionals think in action. New York: Basic Books.
  • Soylu, Ş. (2016). STEM education in early childhood in turkey. Journal of Educational & Instructional Studies in the World, 6, 38-47. Retrived from http://www.wjeis.org/FileUpload/ds217232/File/07.sebnem_soylu.pdf
  • Stohlmann, M., Moore, T. J., and Roehrig, G. H. (2012). Consideration for Teaching Integrated STEM Education. Journal of Pre-College Engineering Education Research, 2(1), 27-34. doi:10.5703/1288284314653.
  • Şahin, A., Ayar, M.C. and Adıgüzel, T. (2014). Fen, teknoloji,mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri. Kuram ve Uygulamada Eğitim Bilimleri, 14(1), 1-26. doi: 10.12738/estp.2014.1.18763.
  • Tambychik, T., and Meerah, T. S. M. (2010). Students’ difficulties in mathematics problem-solving: What do they say?. Procedia-Social and Behavioral Sciences, 8, 142-151. doi:10.1016/j.sbspro.2010.12.020
  • Tseng, K., Chang, C., Lou, S., and Chen, W. (2013). Attitudes towards science, technology, engineering and mathematics (STEM) in a project-based learning (PBL) environment. International Journal of Technology and Design Education, 23(1), 87–102. doi:10.1007/s10798-011-9160-x
  • Tuğluk, M. N., and Öcal, S. (2017). Examination of stem education and its effect on economy: Importance of early childhood education. Educational Research And Practice, 362.
  • Ültay, E. (2017). Examination of context-based problem-solving abilities of pre-service physics teachers. Journal of Baltic Science Education, 16(1), 113-122. Retrived from http://www.scientiasocialis.lt/jbse/files/pdf/vol16/113-122.Ultay_JBSE_Vol.16_No.1.pdf
  • Venville, G., Wallace, J., Rennie, L. J., and Malone, J. (1998). The integration of science, mathematics, and technology in a discipline‐based culture. School Science and Mathematics, 98(6), 294-302. doi: 10.1111/j.1949-8594.1998.tb17424.
  • Vollstedt, A- M., Robinson, M. and Wang, E. (2007). Using robotics to enhance science, technology, engineering, and mathematics curricula. American Society for Engineering Education (ASEE) Pacific Southwest Annual Conference, Middle Atlantic.
  • Wade- Shepherd, A. A. (2016). The effect of middle school STEM curriculum on science and math achievement scores. Doctoral Dissertation, Union University, Tennessee.
  • Walsh, L. N., Howard, R. G., and Bowe, B. (2007). Phenomenographic study of students’ problem solving approaches in physics. Physical Review Special Topics-Physics Education Research, 3(2), 020108. doi: 10.1103/PhysRevSTPER.3.020108
  • Worker, S. and Mahacek, R. (2013). 4-H out-of- school STEM education. Children’s Technology and Engineering, 18, 16-20.
  • Wosu, S. N. (2013). Impact of academic performance improvement (API) skills on math and science achievement gains. American Society for Engineering Education Annual Conference & Exposition, Atlanta. Retrived from https://peer.asee.org/19697
  • World Economic Forum. (2015). New Vision for Education: Unlocking the Potential of Technology. Geneva, Switzerland: World Economic Forum. Retrived from http://www3.weforum.org/docs/WEFUSA_NewVisionforEducation_Report2015.pdf
  • Yıldırım, B. (2016). 7. sınıf fen bilimleri dersine entegre edilmiş fen teknoloji mühendislik matematik (STEM) uygulamaları ve tam öğrenmenin incelenmesi [An examination of the effects of science, technology, engineering, mathematics (STEM) applications and mastery learning integrated into the 7th grade science course]. Doctoral Dissertation, Gazi Üniversitesi, Ankara
  • Yıldırım, B., and Selvi , M. (2015). Adaptatıon Of STEM Attıtude Scale To Turkısh. Turkish Studies:International Periodical For The Languages, Literature and History of Turkish or Turkic, 10(3), 1117-1130. doi: 10.7827/TurkishStudies.7974

The Relationship of STEM Attitudes and Reflective Thinking Skills on Problem-Solving

Year 2020, Volume: 16 Issue: 27, 76 - 93, 31.07.2020
https://doi.org/10.26466/opus.667004

Abstract

The purpose of this study is to examine the relationship between STEM attitudes of middle-school students and their reflective thinking skills on problem-solving. For this aim, a survey was administered to a total of 576 students, including between 5-8 grades. In this study, the “STEM Attitude Scale” and the “Reflective Thinking Skill on Problem Solving Scale” were used as the data collection tools. The results showed that significant differences were found for the students’ reflective thinking skills on problem-solving in terms of gender, questioning, and reasoning dimensions in favor of female students. Also, significant differences among grade-levels were found in the questioning and evaluation dimen-sions of the reflective thinking skill on the problem-solving scale. Besides, significant differences were found in the engineering and technology dimensions in favor of female students and also in the mathe-matics and 21st-century skills dimensions in terms of grade-levels. Based on the findings obtained from this study, implications for teaching are made.

References

  • Acar, D., Tertemiz, N., and Taşdemir, A. (2018). The Effects of STEM training on the academic achievement of 4th graders in science and mathematics and their views on stem training. International Electronic Journal of Elementary Education, 10(4), 505-513. doi:10.26822/iejee.2018438141
  • Aydagül, B., and Terzioğlu, T. (2014). Bilim, teknoloji, mühendislik ve matematiğin önemi. TÜSİAD Görüş Dergisi, 85, 13-19. Retrived from http:// www.stemtusiad.org/bilgi- merkezi/makaleler
  • ACTS (2007). Assessment & Teaching of 21st Century Skills. ATC21S
  • Asghar, A., Ellington, R., Rice, E., Johnson, F., and Prime, G. M. (2012). Supporting STEM education in secondary science contexts. Interdisciplinary Journal of Problem-Based Learning, 6(2), 85-125. doi:10.7771/1541-5015.1349
  • Breiner, J. M., Harkness, S. S., Johnson, C. C., and Koehler, C. M. (2012). What Is STEM?: A Discussion About Conception of STEM in Education and Partnerships. School Science and Mathematics, 112(1), 3-11. doi:10.1111/j.1949-8594.2011.00109.x
  • Brophy, S., Klein, S., Portsmore, M., and Rogers, C. (2008). Advancing engineering education in P-12 classrooms. Journal of Engineering Education, 97(3), 369-387. doi:10.1002/j.2168-9830.2008.tb00985.x
  • Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö. E., Karadeniz, Ş., and Demirel, F. (2017). Bilimsel araştırma yöntemleri (23.ed.). Ankara: Pegem Akademi.
  • Bybee, R. W. (2010). What is STEM? Science, 329, 996. doi: 10.1126/science.1194998.
  • Ceylan, S. (2014). Ortaokul fen bilimleri dersindeki asitler ve bazlar konusunda fen, teknoloji, mühendislik ve matematik (FeTeMM) yaklaşımı ile öğretim tasarımı hazırlanmasına yönelik bir çalışma [A study for preparing an instructional design based on sicence, technology, engineering and mathematics (STEM) Approach on the topics of acids and bases at secondary school science course].Master of Thesis, Uludağ Üniversitesi, Bursa.
  • Chiu, A., Price, C. A. and Ovrahim, E. (2015,April). Supporting elementary and middle school stem education at the whole school level: A review of the literature.NARST, Chicago, IL.https://www.msichicago.org/fileadmin/assets/educators/science_leadership_initiative/SLI_Lit_Review.pdf
  • Dewaters, J. and Powers, S. E. (2006). Improving science and energy literacy through project-based K-12 outreach efforts that use energy and environmental themes. Proceedings of the 113th Annual ASEE Conference & Exposition (pp.262-276). Chicago, IL. Retrived from https://peer.asee.org/158
  • Dilekli, Y., & Orakcı, Ş. Öğretmenlerin Yansıtıcı Düşünme Becerilerinin Çeşitli Değişkenlere Göre İncelenmesi. OPUS Uluslararası Toplum Araştırmaları Dergisi, 11(18), 1-1.
  • Dugger Jr,, W. E. (2010). Evolution of STEM in the United States. Retrived from http://www.iteaconnect.org/Resources/PressRoom/AustraliaPaper.pdf.
  • Gonzalez, H., and Kuenzi, J. J. (2012). Science, technology, engineering and mathematics (STEM) education: a primer.Congressional Research Service 7-5700, Washington, DC. Retrived from https://fas.org/sgp/crs/misc/R42642.pdf
  • Hmelo-Silver, C.E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235-266. doi: 10.1023/B:EDPR.0000034022.16470.f3
  • Honey, M., Pearson, G., and Schweingruber, H. (Eds.). (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research (Vol. 500). Washington, DC: National Academies Press.
  • Kızılkaya, G. ve Aşkar, P. (2010). Problem çözmeye yönelik yansıtıcı düşünme becerisi ölçeğinin geliştirilmesi. Eğitim ve Bilim, 34(154). Retrived from http://eb.ted.org.tr/index.php/EB/article/view/550
  • McClain, M. L. (2015). The effect of STEM education on mathematics achievement of fourth-grade underrepresented minority students. Doctoral Dissertation, Capella University, Minneapolis.
  • Morrison, J. (2006). Attributes of STEM education: The student, the school, the classroom. Baltimore, MD: The Teaching Institute for Excellence in STEM.
  • OECD (2005). The definition and selection of key competencies: Executive summary, Organisation for Economic Co-operation and Development. Retrived from www.oecd.org/dataoecd/47/61/35070367.pdf
  • Olivarez, N. (2012). The impact of a STEM program on academic achievement of eight grade students in a south texas middle school. Doctoral Dissertation, Texas A & M University, Texas.
  • Partnership for 21st Century Skills. (2013). Framework For 21st Century Learning. Washington,DC: Partnership for 21st Century Skills.
  • Pekbay, C. (2017). Fen, teknoloji, mühendislik ve matematik etkinliklerinin ortaokul öğrencileri üzerindeki etkileri [Effects of science technology engineering and mathematics activities on middle school students]. Doctoral Dissertation, Hacettepe Üniversitesi, Ankara.
  • Philips, S. D., Pazienza, N. J., and Ferrin, H. H. (1984). Decision-making styles and problem-solving appraisal. Journal of Counseling Psychology, 31(4), 497-502 doi: 10.1037/0022-0167.31.4.497
  • Ricks, M.M. (2006). A study of an impact of an informal science education program on middle school students’ science knowledge, science attitude, STEM high school and college course selections, and career decisions. Doctoral Disserttion, The University of Texas, Austin.
  • Roskos, K., Vukelich, C. and Risko, V. (2001). Reflection and learning to teach reading: a critical review of literacy and general teacher education studies. Journal of Literacy Research, 33 (4), 595-635. doi:10.1080/10862960109548127
  • Saleh, A. H. (2016). A proposed unit in the light of STEM approach and its effect on developing attitudes toward (STEM) and problem solving skills for primary students. International Interdisciplinary Journal of Education, 5(7), 186- 217. Retrived from http://iijoe.org/v5/IIJOE_A_09_07_05_2016.pdf
  • Sanders, M. (2009). STEM, STEM education, STEM mania. Technology Teacher, 68(4), 20–26. Retrived from https://vtechworks.lib.vt.edu/bitstream/handle/10919/51616/STEMmania.pdf?sequence
  • Savul, G. (2017, June). Performans Görevlerinin Problem Çözme Becerisine Etkisi. Master Thesis, Ankara University, Ankara.
  • Schön, D.A. (1983). The reflective practitioner: How professionals think in action. New York: Basic Books.
  • Soylu, Ş. (2016). STEM education in early childhood in turkey. Journal of Educational & Instructional Studies in the World, 6, 38-47. Retrived from http://www.wjeis.org/FileUpload/ds217232/File/07.sebnem_soylu.pdf
  • Stohlmann, M., Moore, T. J., and Roehrig, G. H. (2012). Consideration for Teaching Integrated STEM Education. Journal of Pre-College Engineering Education Research, 2(1), 27-34. doi:10.5703/1288284314653.
  • Şahin, A., Ayar, M.C. and Adıgüzel, T. (2014). Fen, teknoloji,mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri. Kuram ve Uygulamada Eğitim Bilimleri, 14(1), 1-26. doi: 10.12738/estp.2014.1.18763.
  • Tambychik, T., and Meerah, T. S. M. (2010). Students’ difficulties in mathematics problem-solving: What do they say?. Procedia-Social and Behavioral Sciences, 8, 142-151. doi:10.1016/j.sbspro.2010.12.020
  • Tseng, K., Chang, C., Lou, S., and Chen, W. (2013). Attitudes towards science, technology, engineering and mathematics (STEM) in a project-based learning (PBL) environment. International Journal of Technology and Design Education, 23(1), 87–102. doi:10.1007/s10798-011-9160-x
  • Tuğluk, M. N., and Öcal, S. (2017). Examination of stem education and its effect on economy: Importance of early childhood education. Educational Research And Practice, 362.
  • Ültay, E. (2017). Examination of context-based problem-solving abilities of pre-service physics teachers. Journal of Baltic Science Education, 16(1), 113-122. Retrived from http://www.scientiasocialis.lt/jbse/files/pdf/vol16/113-122.Ultay_JBSE_Vol.16_No.1.pdf
  • Venville, G., Wallace, J., Rennie, L. J., and Malone, J. (1998). The integration of science, mathematics, and technology in a discipline‐based culture. School Science and Mathematics, 98(6), 294-302. doi: 10.1111/j.1949-8594.1998.tb17424.
  • Vollstedt, A- M., Robinson, M. and Wang, E. (2007). Using robotics to enhance science, technology, engineering, and mathematics curricula. American Society for Engineering Education (ASEE) Pacific Southwest Annual Conference, Middle Atlantic.
  • Wade- Shepherd, A. A. (2016). The effect of middle school STEM curriculum on science and math achievement scores. Doctoral Dissertation, Union University, Tennessee.
  • Walsh, L. N., Howard, R. G., and Bowe, B. (2007). Phenomenographic study of students’ problem solving approaches in physics. Physical Review Special Topics-Physics Education Research, 3(2), 020108. doi: 10.1103/PhysRevSTPER.3.020108
  • Worker, S. and Mahacek, R. (2013). 4-H out-of- school STEM education. Children’s Technology and Engineering, 18, 16-20.
  • Wosu, S. N. (2013). Impact of academic performance improvement (API) skills on math and science achievement gains. American Society for Engineering Education Annual Conference & Exposition, Atlanta. Retrived from https://peer.asee.org/19697
  • World Economic Forum. (2015). New Vision for Education: Unlocking the Potential of Technology. Geneva, Switzerland: World Economic Forum. Retrived from http://www3.weforum.org/docs/WEFUSA_NewVisionforEducation_Report2015.pdf
  • Yıldırım, B. (2016). 7. sınıf fen bilimleri dersine entegre edilmiş fen teknoloji mühendislik matematik (STEM) uygulamaları ve tam öğrenmenin incelenmesi [An examination of the effects of science, technology, engineering, mathematics (STEM) applications and mastery learning integrated into the 7th grade science course]. Doctoral Dissertation, Gazi Üniversitesi, Ankara
  • Yıldırım, B., and Selvi , M. (2015). Adaptatıon Of STEM Attıtude Scale To Turkısh. Turkish Studies:International Periodical For The Languages, Literature and History of Turkish or Turkic, 10(3), 1117-1130. doi: 10.7827/TurkishStudies.7974
There are 46 citations in total.

Details

Primary Language English
Subjects Other Fields of Education
Journal Section Articles
Authors

Mücahit Köse 0000-0002-1938-6092

Muhammed Akif Kurtuluş 0000-0001-5206-5787

Kadir Bilen 0000-0003-2054-2117

Publication Date July 31, 2020
Acceptance Date July 2, 2020
Published in Issue Year 2020 Volume: 16 Issue: 27

Cite

APA Köse, M., Kurtuluş, M. A., & Bilen, K. (2020). The Relationship of STEM Attitudes and Reflective Thinking Skills on Problem-Solving. OPUS International Journal of Society Researches, 16(27), 76-93. https://doi.org/10.26466/opus.667004