Research Article
BibTex RIS Cite

Thermal Properties of Foam Mortars used Bentonite as Supplementary Cementitious Material

Year 2023, Volume: 13 Issue: 2, 193 - 202, 31.12.2023
https://doi.org/10.54370/ordubtd.1319066

Abstract

The construction sector has an important role in solving of energy shortage and global warming problems. Therefore, innovative studies focused on building materials are among the priority topics. Foam concrete is one of them. However, foam concrete needs to be improved through the components of the final product in terms of efficieny and sustainability. In this study, it has thought that it could be improve the thermal performaces of foam concretes due to blended cement used bentonite with high thermal performance. On the other hand, thanks to the use of blended cements, reduction in CO2 emissions and more economical cement production would be achieved. The aim of the study is to examining physical, mechanical and thermal properties of foam mortars used bentonite as supplementary cementitious material (SCM). For this aim, it is carried out tests on foam mortars produced with blended cements at replacement ratios determined as 0, 5, 10, 15 wt.% of Portland cement. The results were discussed comparatively among produced series. According to the obtained experimental data, the strength and thermal properties of foam mortars could be developed due to blended cements produced with bentonite additive up to 15% replacement ratio.

References

  • Akgün, Y. (2022, May 20-22). Thermal insulation performances of foamed mortars containing bentonite blended cements [Oral presentation]. Sixth International Conference on Computational Mathematics and Engineering Sciences (CMES-2022), Ordu, Türkiye.
  • ASTM Standard (2023). Standard specification for coal ash and raw or calcined natural pozzolan for use in concrete. ASTM International. https://doi.org/10.1520/C0618-23
  • Bayraktar, O. Y., Kaplan, G., Gencel, O., Benli, A., & Sutcu, M. (2021). Physico-mechanical, durability and thermal properties of basalt fiber reinforced foam concrete containing waste marble powder and slag. Construction and Building Materials, 288, 123128. https://doi.org/10.1016/j.conbuildmat.2021.123128
  • Chen, Y., Wang, W., & Fang, G. (2023). Thermal performance of lauric acid/bentonite/carbon nanofiber composite phase-change materials for heat storage. Journal of Materials Engineering and Performance, 1-14. https://doi.org/10.1007/s11665-023-07964-9
  • Chica, L., & Alzate, A. (2019). Cellular concrete review: New trends for application in construction. Construction and Building Materials, 200, 637-647. https://doi.org/10.1016/j.conbuildmat.2018.12.136
  • CEN (2012). EN 197–1 Cement Part 1: Composition, specification and conformity criteria for common cements. European Committee for Standardization.
  • CEN (2016). EN 196–1 Methods of testing cement—Part 1: Determination of strength. European Committee for Standardization.
  • CEN (1989). EN ISO 8990 Thermal insulation—Determination of steady-state thermal transmission properties-Calibrated and guarded hot box. European Committee for Standardization.
  • CEN (2017). EN ISO 6946 Building components and building elements-Thermal resistance and thermal transmittance-Calculation methods. European Committee for Standardization.
  • CEN (2006). EN 993-15 Methods of test for dense shaped refractory products – determination of thermal conductivity by the hot-wire (parallel) method. European Committee for Standardization.
  • Çamcı, O., Küçükuysal, C., Güngör, C., & Tecer, H. (2022). Long-term thermal loading study on the dehydration behavior of Ca-bentonites of Ünye (Ordu, NE Turkey). Journal of Thermal Analysis and Calorimetry, 147(3), 2073-2082. https://doi.org/10.1007/s10973-021-10647-z
  • DIN (1976). DIN 51046: Testing of ceramic materials; determination of thermal conductivity up to 1600°C according to the hot wire method, thermal conductivity up to 2 WK−1m−1. DIN.
  • Dincer, I., & Rosen, M. A. (2010). Thermal energy storage systems and applications (2nd). John Wiley & Sons. Gambhir, M.L. (2011). Nehajamval, building materials, products, properties & systems. Tata Mcgraw Hill Education Private Limited.
  • Gencel, O., Bilir, T., Bademler, Z., & Ozbakkaloglu, T. (2022). A detailed review on foam concrete composites: Ingredients, properties, and microstructure. Applied Sciences, 12(11), 5752. https://doi.org/10.3390/app12115752
  • Gencel, O., Bayraktar, O. Y., Kaplan, G., Benli, A., Martinez-Barrera, G., Brostow, W., ... & Bodur, B. (2021). Characteristics of hemp fibre reinforced foam concretes with fly ash and Taguchi optimization. Construction and Building Materials, 294, 123607. https://doi.org/10.1016/j.conbuildmat.2021.123607
  • Gencel, O., Nodehi, M., Hekimoğlu, G., Ustaoğlu, A., Sarı, A., Kaplan, G., ... & Ozbakkaloglu, T. (2022). Foam concrete produced with recycled concrete powder and phase change materials. Sustainability, 14(12), 7458. https://doi.org/10.3390/su14127458
  • Gencel, O., Ustaoglu, A., Benli, A., Hekimoğlu, G., Sarı, A., Erdogmus, E., ... & Bayraktar, O. Y. (2022). Investigation of physico-mechanical, thermal properties and solar thermoregulation performance of shape-stable attapulgite based composite phase change material in foam concrete. Solar Energy, 236, 51-62. https://doi.org/10.1016/j.solener.2022.02.042
  • Gong, J., & Zhang, W. (2019). The effects of pozzolanic powder on foam concrete pore structure and frost resistance. Construction and Building Materials, 208, 135-143. https://doi.org/10.1016/j.conbuildmat.2019.02.021
  • Hassan, F., Jamil, F., Hussain, A., Ali, H. M., Janjua, M. M., Khushnood, S., ... & Li, C. (2022). Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: A state of the art review. Sustainable Energy Technologies and Assessments, 49, 101646. https://doi.org/10.1016/j.seta.2021.101646
  • Huang, X., Alva, G., Liu, L., & Fang, G. (2017). Preparation, characterization and thermal properties of fatty acid eutectics/bentonite/expanded graphite composites as novel form–stable thermal energy storage materials. Solar Energy Materials and Solar Cells, 166, 157-166. https://doi.org/10.1016/j.solmat.2017.03.026
  • Incropera, F. P., De Witt, D. P., Bergman, T.L. & Lavine, A. S. (2007). Fundamentals of heat and mass transfer (6th ed.). Wiley.
  • Jhatial, A. A., Goh, W. I., Mohamad, N., Rind, T. A., & Sandhu, A. R. (2020). Development of thermal insulating lightweight foam concrete reinforced with polypropylene fibres. Arabian Journal for Science and Engineering, 45, 4067-4076. https://doi.org/10.1007/s13369-020-04382-0
  • Jitchaiyaphum, K., Sinsiri, T., Jaturapitakkul, C., & Chindaprasirt, P. (2013). Cellular lightweight concrete containing high-calcium fly ash and natural zeolite. International Journal of Minerals, Metallurgy, and Materials, 20, 462-471. https://doi.org/10.1007/s12613-013-0752-1
  • Kaya, T., & Yazicioğlu, S. (2015). Kalsine bentonit katkılı harçların fiziksel ve mekanik özelliklerine yüksek sıcaklık etkisi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 4(2), 150-160. https://doi.org/10.17798/beufen.46634
  • Khandelwal, S., & Rhee, K. Y. (2022). Evaluation of pozzolanic activity, heterogeneous nucleation, and microstructure of cement composites with modified bentonite clays. Construction and Building Materials, 323, 126617. https://doi.org/10.1016/j.conbuildmat.2022.126617
  • Krishna, A. S., Siempu, R., & Kumar, G. S. (2021). Study on the fresh and hardened properties of foam concrete incorporating fly ash. Materials Today: Proceedings, 46(17), 8639-8644. https://doi.org/10.1016/j.matpr.2021.03.599
  • Li, B., You, L., Zheng, M., Wang, Y., & Wang, Z. (2020). Energy consumption pattern and indoor thermal environment of residential building in rural China. Energy and Built Environment, 1(3), 327-336. https://doi.org/10.1016/j.enbenv.2020.04.004
  • Liu, M., Hu, Y., Lai, Z., Yan, T., He, X., Wu, J., ... & Lv, S. (2020). Influence of various bentonites on the mechanical properties and impermeability of cement mortars. Construction and Building Materials, 241, 118015. https://doi.org/10.1016/j.conbuildmat.2020.118015
  • Liu, P., Gong, Y. F., Tian, G. H., & Miao, Z. K. (2021). Preparation and experimental study on the thermal characteristics of lightweight prefabricated nano-silica aerogel foam concrete wallboards. Construction and Building Materials, 272, 121895. https://doi.org/10.1016/j.conbuildmat.2020.121895
  • Maske, M. M., Patil, N .K., & Katdare, A. D. (2021). Review of application of plain and calcined bentonite as a cement blending material in concrete and mortar. Psychology and Education, 58(1), 5873-5878. http://dx.doi.org/10.17762/pae.v58i1.3666
  • Raj, A., Sathyan, D., & Mini, K. M. (2019). Physical and functional characteristics of foam concrete: A review. Construction and Building Materials, 221, 787-799. https://doi.org/10.1016/j.conbuildmat.2019.06.052
  • Raj, B., Sathyan, D., Madhavan, M. K., & Raj, A. (2020). Mechanical and durability properties of hybrid fiber reinforced foam concrete. Construction and Building Materials, 245, 118373. https://doi.org/10.1016/j.conbuildmat.2020.118373
  • Santamouris, M., & Vasilakopoulou, K. (2021). Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 1, 100002. https://doi.org/10.1016/j.prime.2021.100002
  • Sarı, A., Alkan, C., Biçer, A., & Bilgin, C. (2014). Latent heat energy storage characteristics of building composites of bentonite clay and pumice sand with different organic PCMs. International journal of energy research, 38(11), 1478-1491. https://doi.org/10.1002/er.3185
  • Sarı, A. (2016). Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials. Energy Conversion and Management, 117, 132-141. https://doi.org/10.1016/j.enconman.2016.02.078
  • Trümer, A., Ludwig, H. M., Schellhorn, M., & Diedel, R. (2019). Effect of a calcined Westerwald bentonite as supplementary cementitious material on the long-term performance of concrete. Applied Clay Science, 168, 36-42. https://doi.org/10.1016/J.CLAY.2018.10.015
  • TSI (2015). Specification for masonry units - Foam concrete masonry units. Turkish Standard Institue, TS EN 13655.
  • United Nations Environment Programme (2020). 2020 Global status report for buildings and construction: Towards a zero-emission. Efficient and Resilient Buildings and Construction Sector, Global Status Report. Retrieved Febuary 1, 2023 from www.iea.org
  • United Nations (2019). Department of economic and social affairs. World population prospects 2019.
  • Xie, Y., Li, J., Lu, Z., Jiang, J., & Niu, Y. (2019). Preparation and properties of ultra-lightweight EPS concrete based on pre-saturated bentonite. Construction and Building Materials, 195, 505-514. https://doi.org/10.1016/j.conbuildmat.2018.11.091
  • Yang, D., Liu, M., & Ma, Z. (2020). Properties of the foam concrete containing waste brick powder derived from construction and demolition waste. Journal of Building Engineering, 32, 101509. https://doi.org/10.1016/j.jobe.2020.101509
  • Zhao, X., Lim, S. K., Tan, C. S., Li, B., Ling, T. C., Huang, R., & Wang, Q. (2015). Properties of foam mortar prepared with granulated blast-furnace slag. Materials, 8(2), 462-473. https://doi.org/10.3390/ma8020462

Çimento Katkı Malzemesi olarak Bentonit Kullanılan Köpük Harçların Termal Özellikleri

Year 2023, Volume: 13 Issue: 2, 193 - 202, 31.12.2023
https://doi.org/10.54370/ordubtd.1319066

Abstract

İnşaat sektörü, enerji kısıtlığı ve küresel ısınma problemlerinin çözümünde önemli bir role sahiptir. Bu nedenle, yapı malzemelerine odaklı yenilikçi çalışmalar öncelikli konular arasında yer almaktadır. Köpük beton bunlardan biridir. Ancak, köpük beton verimlilik ve sürdürülebilirlik açısından nihai ürün bileşenleri aracılığıyla iyileştirilmesi gerekmektedir. Bu çalışmada, ısıl performansı yüksek bentonit katkılı çimento kullanılmasının köpük betonların ısıl performanslarının iyileştirebileceği düşünülmüştür. Diğer taraftan, katkılı çimento kullanımı sayesinde CO2 emisyonlarında azalma ve daha ekonomik çimento üretimi sağlanabilecektir. Bu çalışmanın amacı, çimento katkı malzemesi (ÇKM) olarak bentonit kullanılan köpük harçların fiziksel, mekanik ve ısıl özelliklerinin incelenmesidir. Bu amaçla, Portland çimentosunun ağırlıkça 0, 5, 10, 15 olarak belirlenen ikame oranlarında katkılı çimentolarla üretilen köpük harçlar üzerinde testler yapılmıştır. Sonuçlar deney serileri arasında karşılaştırmalı olarak tartışıldı. Elde edilen deneysel verilere göre %15' e kadar bentonit katkısı ile üretilen katkılı çimentolar sayesinde köpük harçların dayanım ve ısıl özellikleri geliştirilebilmektedir.

References

  • Akgün, Y. (2022, May 20-22). Thermal insulation performances of foamed mortars containing bentonite blended cements [Oral presentation]. Sixth International Conference on Computational Mathematics and Engineering Sciences (CMES-2022), Ordu, Türkiye.
  • ASTM Standard (2023). Standard specification for coal ash and raw or calcined natural pozzolan for use in concrete. ASTM International. https://doi.org/10.1520/C0618-23
  • Bayraktar, O. Y., Kaplan, G., Gencel, O., Benli, A., & Sutcu, M. (2021). Physico-mechanical, durability and thermal properties of basalt fiber reinforced foam concrete containing waste marble powder and slag. Construction and Building Materials, 288, 123128. https://doi.org/10.1016/j.conbuildmat.2021.123128
  • Chen, Y., Wang, W., & Fang, G. (2023). Thermal performance of lauric acid/bentonite/carbon nanofiber composite phase-change materials for heat storage. Journal of Materials Engineering and Performance, 1-14. https://doi.org/10.1007/s11665-023-07964-9
  • Chica, L., & Alzate, A. (2019). Cellular concrete review: New trends for application in construction. Construction and Building Materials, 200, 637-647. https://doi.org/10.1016/j.conbuildmat.2018.12.136
  • CEN (2012). EN 197–1 Cement Part 1: Composition, specification and conformity criteria for common cements. European Committee for Standardization.
  • CEN (2016). EN 196–1 Methods of testing cement—Part 1: Determination of strength. European Committee for Standardization.
  • CEN (1989). EN ISO 8990 Thermal insulation—Determination of steady-state thermal transmission properties-Calibrated and guarded hot box. European Committee for Standardization.
  • CEN (2017). EN ISO 6946 Building components and building elements-Thermal resistance and thermal transmittance-Calculation methods. European Committee for Standardization.
  • CEN (2006). EN 993-15 Methods of test for dense shaped refractory products – determination of thermal conductivity by the hot-wire (parallel) method. European Committee for Standardization.
  • Çamcı, O., Küçükuysal, C., Güngör, C., & Tecer, H. (2022). Long-term thermal loading study on the dehydration behavior of Ca-bentonites of Ünye (Ordu, NE Turkey). Journal of Thermal Analysis and Calorimetry, 147(3), 2073-2082. https://doi.org/10.1007/s10973-021-10647-z
  • DIN (1976). DIN 51046: Testing of ceramic materials; determination of thermal conductivity up to 1600°C according to the hot wire method, thermal conductivity up to 2 WK−1m−1. DIN.
  • Dincer, I., & Rosen, M. A. (2010). Thermal energy storage systems and applications (2nd). John Wiley & Sons. Gambhir, M.L. (2011). Nehajamval, building materials, products, properties & systems. Tata Mcgraw Hill Education Private Limited.
  • Gencel, O., Bilir, T., Bademler, Z., & Ozbakkaloglu, T. (2022). A detailed review on foam concrete composites: Ingredients, properties, and microstructure. Applied Sciences, 12(11), 5752. https://doi.org/10.3390/app12115752
  • Gencel, O., Bayraktar, O. Y., Kaplan, G., Benli, A., Martinez-Barrera, G., Brostow, W., ... & Bodur, B. (2021). Characteristics of hemp fibre reinforced foam concretes with fly ash and Taguchi optimization. Construction and Building Materials, 294, 123607. https://doi.org/10.1016/j.conbuildmat.2021.123607
  • Gencel, O., Nodehi, M., Hekimoğlu, G., Ustaoğlu, A., Sarı, A., Kaplan, G., ... & Ozbakkaloglu, T. (2022). Foam concrete produced with recycled concrete powder and phase change materials. Sustainability, 14(12), 7458. https://doi.org/10.3390/su14127458
  • Gencel, O., Ustaoglu, A., Benli, A., Hekimoğlu, G., Sarı, A., Erdogmus, E., ... & Bayraktar, O. Y. (2022). Investigation of physico-mechanical, thermal properties and solar thermoregulation performance of shape-stable attapulgite based composite phase change material in foam concrete. Solar Energy, 236, 51-62. https://doi.org/10.1016/j.solener.2022.02.042
  • Gong, J., & Zhang, W. (2019). The effects of pozzolanic powder on foam concrete pore structure and frost resistance. Construction and Building Materials, 208, 135-143. https://doi.org/10.1016/j.conbuildmat.2019.02.021
  • Hassan, F., Jamil, F., Hussain, A., Ali, H. M., Janjua, M. M., Khushnood, S., ... & Li, C. (2022). Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: A state of the art review. Sustainable Energy Technologies and Assessments, 49, 101646. https://doi.org/10.1016/j.seta.2021.101646
  • Huang, X., Alva, G., Liu, L., & Fang, G. (2017). Preparation, characterization and thermal properties of fatty acid eutectics/bentonite/expanded graphite composites as novel form–stable thermal energy storage materials. Solar Energy Materials and Solar Cells, 166, 157-166. https://doi.org/10.1016/j.solmat.2017.03.026
  • Incropera, F. P., De Witt, D. P., Bergman, T.L. & Lavine, A. S. (2007). Fundamentals of heat and mass transfer (6th ed.). Wiley.
  • Jhatial, A. A., Goh, W. I., Mohamad, N., Rind, T. A., & Sandhu, A. R. (2020). Development of thermal insulating lightweight foam concrete reinforced with polypropylene fibres. Arabian Journal for Science and Engineering, 45, 4067-4076. https://doi.org/10.1007/s13369-020-04382-0
  • Jitchaiyaphum, K., Sinsiri, T., Jaturapitakkul, C., & Chindaprasirt, P. (2013). Cellular lightweight concrete containing high-calcium fly ash and natural zeolite. International Journal of Minerals, Metallurgy, and Materials, 20, 462-471. https://doi.org/10.1007/s12613-013-0752-1
  • Kaya, T., & Yazicioğlu, S. (2015). Kalsine bentonit katkılı harçların fiziksel ve mekanik özelliklerine yüksek sıcaklık etkisi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 4(2), 150-160. https://doi.org/10.17798/beufen.46634
  • Khandelwal, S., & Rhee, K. Y. (2022). Evaluation of pozzolanic activity, heterogeneous nucleation, and microstructure of cement composites with modified bentonite clays. Construction and Building Materials, 323, 126617. https://doi.org/10.1016/j.conbuildmat.2022.126617
  • Krishna, A. S., Siempu, R., & Kumar, G. S. (2021). Study on the fresh and hardened properties of foam concrete incorporating fly ash. Materials Today: Proceedings, 46(17), 8639-8644. https://doi.org/10.1016/j.matpr.2021.03.599
  • Li, B., You, L., Zheng, M., Wang, Y., & Wang, Z. (2020). Energy consumption pattern and indoor thermal environment of residential building in rural China. Energy and Built Environment, 1(3), 327-336. https://doi.org/10.1016/j.enbenv.2020.04.004
  • Liu, M., Hu, Y., Lai, Z., Yan, T., He, X., Wu, J., ... & Lv, S. (2020). Influence of various bentonites on the mechanical properties and impermeability of cement mortars. Construction and Building Materials, 241, 118015. https://doi.org/10.1016/j.conbuildmat.2020.118015
  • Liu, P., Gong, Y. F., Tian, G. H., & Miao, Z. K. (2021). Preparation and experimental study on the thermal characteristics of lightweight prefabricated nano-silica aerogel foam concrete wallboards. Construction and Building Materials, 272, 121895. https://doi.org/10.1016/j.conbuildmat.2020.121895
  • Maske, M. M., Patil, N .K., & Katdare, A. D. (2021). Review of application of plain and calcined bentonite as a cement blending material in concrete and mortar. Psychology and Education, 58(1), 5873-5878. http://dx.doi.org/10.17762/pae.v58i1.3666
  • Raj, A., Sathyan, D., & Mini, K. M. (2019). Physical and functional characteristics of foam concrete: A review. Construction and Building Materials, 221, 787-799. https://doi.org/10.1016/j.conbuildmat.2019.06.052
  • Raj, B., Sathyan, D., Madhavan, M. K., & Raj, A. (2020). Mechanical and durability properties of hybrid fiber reinforced foam concrete. Construction and Building Materials, 245, 118373. https://doi.org/10.1016/j.conbuildmat.2020.118373
  • Santamouris, M., & Vasilakopoulou, K. (2021). Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 1, 100002. https://doi.org/10.1016/j.prime.2021.100002
  • Sarı, A., Alkan, C., Biçer, A., & Bilgin, C. (2014). Latent heat energy storage characteristics of building composites of bentonite clay and pumice sand with different organic PCMs. International journal of energy research, 38(11), 1478-1491. https://doi.org/10.1002/er.3185
  • Sarı, A. (2016). Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials. Energy Conversion and Management, 117, 132-141. https://doi.org/10.1016/j.enconman.2016.02.078
  • Trümer, A., Ludwig, H. M., Schellhorn, M., & Diedel, R. (2019). Effect of a calcined Westerwald bentonite as supplementary cementitious material on the long-term performance of concrete. Applied Clay Science, 168, 36-42. https://doi.org/10.1016/J.CLAY.2018.10.015
  • TSI (2015). Specification for masonry units - Foam concrete masonry units. Turkish Standard Institue, TS EN 13655.
  • United Nations Environment Programme (2020). 2020 Global status report for buildings and construction: Towards a zero-emission. Efficient and Resilient Buildings and Construction Sector, Global Status Report. Retrieved Febuary 1, 2023 from www.iea.org
  • United Nations (2019). Department of economic and social affairs. World population prospects 2019.
  • Xie, Y., Li, J., Lu, Z., Jiang, J., & Niu, Y. (2019). Preparation and properties of ultra-lightweight EPS concrete based on pre-saturated bentonite. Construction and Building Materials, 195, 505-514. https://doi.org/10.1016/j.conbuildmat.2018.11.091
  • Yang, D., Liu, M., & Ma, Z. (2020). Properties of the foam concrete containing waste brick powder derived from construction and demolition waste. Journal of Building Engineering, 32, 101509. https://doi.org/10.1016/j.jobe.2020.101509
  • Zhao, X., Lim, S. K., Tan, C. S., Li, B., Ling, T. C., Huang, R., & Wang, Q. (2015). Properties of foam mortar prepared with granulated blast-furnace slag. Materials, 8(2), 462-473. https://doi.org/10.3390/ma8020462
There are 42 citations in total.

Details

Primary Language English
Subjects Construction Materials, Structural Engineering
Journal Section Research Articles
Authors

Yasemin Akgün 0000-0002-4178-5233

Early Pub Date December 29, 2023
Publication Date December 31, 2023
Submission Date June 23, 2023
Published in Issue Year 2023 Volume: 13 Issue: 2

Cite

APA Akgün, Y. (2023). Thermal Properties of Foam Mortars used Bentonite as Supplementary Cementitious Material. Ordu Üniversitesi Bilim Ve Teknoloji Dergisi, 13(2), 193-202. https://doi.org/10.54370/ordubtd.1319066