Araştırma Makalesi
BibTex RIS Kaynak Göster

Primer İmmün Trombositopenide Tedavi Yanıtının Öngördürücüsü Olarak Sistemik İmmün-İnflamasyon İndeksi (SII)

Yıl 2026, Cilt: 48 Sayı: 2, 236 - 245, 11.02.2026
https://doi.org/10.20515/otd.1820881
https://izlik.org/JA65EF48KG

Öz

Primer immün trombositopeni (İTP), immün aracılı trombosit yıkımı ve trombosit üretiminde azalma sonucu gelişen izole trombositopeni ile karakterize otoimmün bir hastalıktır. Kortikosteroidler ve intravenöz immünoglobulin (IVIG) standart birinci basamak tedaviler olmasına rağmen, birçok hastada yeterli veya kalıcı yanıt elde edilememekte, bu da tedavi direncini erken öngörebilecek belirteçlerin önemini ortaya koymaktadır. Bu çalışmanın amacı, primer İTP hastalarında kortikosteroid ve IVIG tedavisine yanıtsızlıkla ilişkili klinik ve laboratuvar faktörleri belirlemek ve sistemik immün-inflamasyon indeksinin (SII) prognostik değerini araştırmaktır. Bu retrospektif çalışmaya Ocak 2008 - Aralık 2023 arasında primer İTP tanısı alan 109 erişkin hasta dahil edilmiştir. Demografik, klinik ve laboratuvar veriler hasta dosyalarından elde edilerek her hasta için SII değeri hesaplanmıştır. Tedavi yanıtını öngörmede optimal SII kesim değeri ROC analizi ile belirlenmiş, lojistik regresyon analizi ile kortikosteroid ve IVIG direncini etkileyen bağımsız faktörler saptanmıştır. Hastaların yaş ortalaması 51,5 ± 16,9 yıl olup, %72,5’i kadındır. Tüm hastalara birinci basamak tedavide sistemik steroid uygulanmış olup, %32,1’ine ek olarak IVIG uygulanmıştır. Steroid tedavisine tam yanıt oranı %50, yanıtsızlık oranı %31,3; IVIG tedavisine yanıtsızlık oranı ise %45,7 olarak saptanmıştır. ROC analizi sonucunda optimal SII kesim değeri 48,33 olarak bulunmuştur. Düşük SII düzeyine sahip hastalarda her iki tedaviye yanıt oranlarının anlamlı olarak daha yüksek olduğu bulunmuştur (p < 0,05). Çok değişkenli analiz, düşük SII’nin IVIG yanıtını bağımsız olarak öngördüğünü göstermiştir (OR = 8,25, %95 GA 1,15–59,00; p = 0,036). Sonuç olarak, tanı anındaki SII değeri birinci basamak tedavi yanıtını öngören bağımsız bir belirteçtir ve erken değerlendirilmesi, dirençli olguların erken dönemde ikinci basamak tedaviye yönlendirilmesine olanak sağlayacaktır.

Etik Beyan

Çalışma, Bursa Uludağ Üniversitesi Tıp Fakültesi Klinik Araştırmalar Etik Kurulu tarafından onaylanmıştır (Onay no: 2023-24/16, Onay tarihi: 21.11.2023).

Kaynakça

  • 1. Demir AM, Ümit EG, Ar MC, Ayer M, Aylı M, Karakuş V, et al. Management of Adult Primary Immune Thrombocytopenia: Delphi-Based Consensus Recommendations. Turkish Journal of Hematology. 2024;41(2):97–104.
  • 2. Weycker D, Hanau A, Hatfield M, Wu H, Sharma A, Bensink ME, et al. Primary immune thrombocytopenia in US clinical practice: incidence and healthcare burden in first 12 months following diagnosis. J Med Econ [Internet]. 2020 Feb 1 [cited 2025 Sep 7];23(2):184–92.
  • 3. Moulis G, Comont T, Adoue D. Actualités de l’épidémiologie du purpura thrombopénique immunologique de l’adulte : Impact pour la pratique clinique. Revue de Medecine Interne [Internet]. 2021 Jan 1 [cited 2025 Sep 7];42(1):11–5.
  • 4. Zufferey A, Kapur R, Semple JW. Pathogenesis and therapeutic mechanisms in immune thrombocytopenia (ITP). J Clin Med [Internet]. 2017 Feb 9 [cited 2025 Sep 7];6(2).
  • 5. Piel-Julian ML, Mahévas M, Germain J, Languille L, Comont T, Lapeyre-Mestre M, et al. Risk factors for bleeding, including platelet count threshold, in newly diagnosed immune thrombocytopenia adults. Journal of Thrombosis and Haemostasis [Internet]. 2018 Sep 1 [cited 2025 Sep 7];16(9):1830–42.
  • 6. Liu X guang, Hou Y, Hou M. How we treat primary immune thrombocytopenia in adults. Vol. 16, Journal of Hematology and Oncology. BioMed Central Ltd; 2023.
  • 7. Nakazaki K, Hosoi M, Hangaishi A, Ichikawa M, Nannya Y, Kurokawa M. Comparison between pulsed high-dose dexamethasone and daily corticosteroid therapy for adult primary immune thrombocytopenia: A retrospective study. Internal Medicine [Internet]. 2012 [cited 2025 Sep 7];51(8):859–63.
  • 8. Frederiksen H, Ghanima W. Response of first line treatment with corticosteroids in a population-based cohort of adults with primary immune thrombocytopenia. Eur J Intern Med [Internet]. 2017 Jan 1 [cited 2025 Sep 7];37:e23–5.
  • 9. Provan D, Arnold DM, Bussel JB, Chong BH, Cooper N, Gernsheimer T, et al. Updated international consensus report on the investigation and management of primary immune thrombocytopenia. Blood Adv [Internet]. 2019 [cited 2025 Sep 7];3(22):3780–817.
  • 10. Qin YH, Zhou TB, Su LN, Lei FY, Zhao YJ, Huang WF. The efficacy of different dose intravenous immunoglobulin in treating acute idiopathic thrombocytopenic purpura: A meta-analysis of 13 randomized controlled trials. Blood Coagulation and Fibrinolysis [Internet]. 2010 Dec [cited 2025 Sep 7];21(8):713–21.
  • 11. Rodeghiero F. First-line therapies for immune thrombocytopenic purpura: Re-evaluating the need to treat. Eur J Haematol [Internet]. 2008 Feb [cited 2025 Sep 7];80(SUPPL. 69):19–26.
  • 12. Gudbrandsdottir S, Birgens HS, Frederiksen H, Jensen BA, Jensen MK, Kjeldsen L, et al. Rituximab and dexamethasone vs dexamethasone monotherapy in newly diagnosed patients with primary immune thrombocytopenia. Blood [Internet]. 2013 [cited 2025 Sep 21];121(11):1976–81.
  • 13. Chen H, Zheng W, Su J, Xu D, Wang Q, Leng X, et al. Low-dose rituximab therapy for refractory thrombocytopenia in patients with systemic lupus erythematosus--a prospective pilot study. Rheumatology (Oxford) [Internet]. 2011 Sep [cited 2025 Sep 21];50(9):1640–4.
  • 14. Rodeghiero F, Stasi R, Gernsheimer T, Michel M, Provan D, Arnold DM, et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood [Internet]. 2009 Mar 12 [cited 2025 Sep 21];113(11):2386–93.
  • 15. Mahévas M, Gerfaud-Valentin M, Moulis G, Terriou L, Audia S, Guenin S, et al. Characteristics, outcome, and response to therapy of multirefractory chronic immune thrombocytopenia. Blood [Internet]. 2016 Sep 22 [cited 2025 Nov 4];128(12):1625–30.
  • 16. Jolink ATC, Nelson VS, Schipperus MR, Amini SN, Vidarsson G, van der Schoot CE, et al. Potential diagnostic approaches for prediction of therapeutic responses in immune thrombocytopenia. Vol. 10, Journal of Clinical Medicine. MDPI; 2021.
  • 17. Allegra A, Cicero N, Mirabile G, Giorgianni CM, Gangemi S. Novel Biomarkers for Diagnosis and Monitoring of Immune Thrombocytopenia. Vol. 24, International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute (MDPI); 2023.
  • 18. Zheng Z, Liu J, He T, Liu C. The predictive value of NLR, SII, and complement 3 in treatment response for systemic lupus erythematosus with immune thrombocytopenia. Front Immunol. 2025 Jul 29;16.
  • 19. Elmeazawy R, S.Qassem S, M. Morad L. The prognostic value of the systemic immune-inflammatory index and the systemic inflammation response index in pediatric immune thrombocytopenia. Egyptian Pediatric Association Gazette. 2025 May 19;73(1).
  • 20. Wu YF, Huang WH, Gu MH, Lin SR, Chu SC, Wang TF, et al. Higher CD56+ or CD2+ lymphocyte percentage predicts poor steroid response in patients with immune thrombocytopenia. Thromb Res. 2019 Nov 1;183:63–8.
  • 21. Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine [Internet]. 2015 Jul 1 [cited 2025 Nov 8];74(1):5–17.
  • 22. Žibřidová K, Souček O, Krčmová LK, Jankovičová K, Gančarčíková M, Pejková MA, et al. Lymphocyte subpopulations: a potential predictor of a response in patients with immune thrombocytopenia. Hematology (United Kingdom). 2024;29(1).
  • 23. Stimpson ML, Lait PJP, Schewitz-Bowers LP, Williams EL, Thirlwall KF, Lee RWJ, et al. IL-10 and IL-17 expression by CD4+ T cells is altered in corticosteroid refractory immune thrombocytopenia (ITP). Journal of Thrombosis and Haemostasis [Internet]. 2020 Oct 1 [cited 2025 Nov 8];18(10):2712–20.
  • 24. Qiao J, Liu Y, Li X, Xia Y, Wu Y, Li D, et al. Elevated expression of NLRP3 in patients with immune thrombocytopenia. Immunol Res [Internet]. 2016 Apr 1 [cited 2025 Nov 8];64(2):431–7.
  • 25. Yu J, Hua M, Zhao X, Wang R, Zhong C, Zhang C, et al. NF- κ B-94ins/del ATTG Genotype Contributes to the Susceptibility and Imbalanced Th17 Cells in Patients with Immune Thrombocytopenia. J Immunol Res [Internet]. 2018 [cited 2025 Nov 8];2018.
  • 26. Asoglu V, Umit EG, Demir M. A biomarker and therapeutical target in immune thrombocytopenia: TNF receptor-associated factor 6. Biomark Med [Internet]. 2019 Jan 1 [cited 2025 Nov 8];13(1):27–31.

Systemic Immune-Inflammation Index (SII) as a Predictor of Treatment Response in Primary Immune Thrombocytopenia

Yıl 2026, Cilt: 48 Sayı: 2, 236 - 245, 11.02.2026
https://doi.org/10.20515/otd.1820881
https://izlik.org/JA65EF48KG

Öz

Primary immune thrombocytopenia (ITP) is an autoimmune disorder characterized by isolated thrombocytopenia resulting from immune-mediated platelet destruction and impaired platelet production. Although corticosteroids and intravenous immunoglobulin (IVIG) are standard first-line therapies, many patients fail to achieve or maintain an adequate response, emphasizing the need for early predictors of treatment resistance. This study aimed to identify clinical and laboratory factors associated with unresponsiveness to corticosteroid and IVIG therapy in primary ITP and to explore the predictive value of systemic immune-inflammation index (SII). This retrospective study included 109 adults newly diagnosed with primary ITP between January 2008 and December 2023. Demographic, clinical, and laboratory data were collected from patient records, and SII was calculated for each patient. Receiver operating characteristic (ROC) analysis determined the optimal SII cut-off for predicting treatment response, while logistic regression identified independent predictors of corticosteroid and IVIG resistance. The mean age was 51.48 ± 16.9 years, and 72.5% were female. All patients received systemic steroids, and 32.1% also received IVIG. The complete response rate to steroids was 50%, while 31.3% were non-responders; the IVIG non-response rate was 45.7%. ROC analysis identified an optimal SII cut-off of 48.33, with lower SII associated with significantly higher response rates to both steroids and IVIG (p < 0.05). Multivariate analysis confirmed low SII as an independent predictor of IVIG responsiveness (OR = 8.25, 95% CI 1.15–59.00; p = 0.036). In conclusion, SII at the time of diagnosis independently predicts response to first-line therapy, and early assessment may facilitate timely second-line interventions

Etik Beyan

The study was approved by the Clinical Research Ethics Committee of the Bursa Uludag University Faculty of Medicine ( Approval no: 2023-24/16, Approval date: 21.11.2023).

Kaynakça

  • 1. Demir AM, Ümit EG, Ar MC, Ayer M, Aylı M, Karakuş V, et al. Management of Adult Primary Immune Thrombocytopenia: Delphi-Based Consensus Recommendations. Turkish Journal of Hematology. 2024;41(2):97–104.
  • 2. Weycker D, Hanau A, Hatfield M, Wu H, Sharma A, Bensink ME, et al. Primary immune thrombocytopenia in US clinical practice: incidence and healthcare burden in first 12 months following diagnosis. J Med Econ [Internet]. 2020 Feb 1 [cited 2025 Sep 7];23(2):184–92.
  • 3. Moulis G, Comont T, Adoue D. Actualités de l’épidémiologie du purpura thrombopénique immunologique de l’adulte : Impact pour la pratique clinique. Revue de Medecine Interne [Internet]. 2021 Jan 1 [cited 2025 Sep 7];42(1):11–5.
  • 4. Zufferey A, Kapur R, Semple JW. Pathogenesis and therapeutic mechanisms in immune thrombocytopenia (ITP). J Clin Med [Internet]. 2017 Feb 9 [cited 2025 Sep 7];6(2).
  • 5. Piel-Julian ML, Mahévas M, Germain J, Languille L, Comont T, Lapeyre-Mestre M, et al. Risk factors for bleeding, including platelet count threshold, in newly diagnosed immune thrombocytopenia adults. Journal of Thrombosis and Haemostasis [Internet]. 2018 Sep 1 [cited 2025 Sep 7];16(9):1830–42.
  • 6. Liu X guang, Hou Y, Hou M. How we treat primary immune thrombocytopenia in adults. Vol. 16, Journal of Hematology and Oncology. BioMed Central Ltd; 2023.
  • 7. Nakazaki K, Hosoi M, Hangaishi A, Ichikawa M, Nannya Y, Kurokawa M. Comparison between pulsed high-dose dexamethasone and daily corticosteroid therapy for adult primary immune thrombocytopenia: A retrospective study. Internal Medicine [Internet]. 2012 [cited 2025 Sep 7];51(8):859–63.
  • 8. Frederiksen H, Ghanima W. Response of first line treatment with corticosteroids in a population-based cohort of adults with primary immune thrombocytopenia. Eur J Intern Med [Internet]. 2017 Jan 1 [cited 2025 Sep 7];37:e23–5.
  • 9. Provan D, Arnold DM, Bussel JB, Chong BH, Cooper N, Gernsheimer T, et al. Updated international consensus report on the investigation and management of primary immune thrombocytopenia. Blood Adv [Internet]. 2019 [cited 2025 Sep 7];3(22):3780–817.
  • 10. Qin YH, Zhou TB, Su LN, Lei FY, Zhao YJ, Huang WF. The efficacy of different dose intravenous immunoglobulin in treating acute idiopathic thrombocytopenic purpura: A meta-analysis of 13 randomized controlled trials. Blood Coagulation and Fibrinolysis [Internet]. 2010 Dec [cited 2025 Sep 7];21(8):713–21.
  • 11. Rodeghiero F. First-line therapies for immune thrombocytopenic purpura: Re-evaluating the need to treat. Eur J Haematol [Internet]. 2008 Feb [cited 2025 Sep 7];80(SUPPL. 69):19–26.
  • 12. Gudbrandsdottir S, Birgens HS, Frederiksen H, Jensen BA, Jensen MK, Kjeldsen L, et al. Rituximab and dexamethasone vs dexamethasone monotherapy in newly diagnosed patients with primary immune thrombocytopenia. Blood [Internet]. 2013 [cited 2025 Sep 21];121(11):1976–81.
  • 13. Chen H, Zheng W, Su J, Xu D, Wang Q, Leng X, et al. Low-dose rituximab therapy for refractory thrombocytopenia in patients with systemic lupus erythematosus--a prospective pilot study. Rheumatology (Oxford) [Internet]. 2011 Sep [cited 2025 Sep 21];50(9):1640–4.
  • 14. Rodeghiero F, Stasi R, Gernsheimer T, Michel M, Provan D, Arnold DM, et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood [Internet]. 2009 Mar 12 [cited 2025 Sep 21];113(11):2386–93.
  • 15. Mahévas M, Gerfaud-Valentin M, Moulis G, Terriou L, Audia S, Guenin S, et al. Characteristics, outcome, and response to therapy of multirefractory chronic immune thrombocytopenia. Blood [Internet]. 2016 Sep 22 [cited 2025 Nov 4];128(12):1625–30.
  • 16. Jolink ATC, Nelson VS, Schipperus MR, Amini SN, Vidarsson G, van der Schoot CE, et al. Potential diagnostic approaches for prediction of therapeutic responses in immune thrombocytopenia. Vol. 10, Journal of Clinical Medicine. MDPI; 2021.
  • 17. Allegra A, Cicero N, Mirabile G, Giorgianni CM, Gangemi S. Novel Biomarkers for Diagnosis and Monitoring of Immune Thrombocytopenia. Vol. 24, International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute (MDPI); 2023.
  • 18. Zheng Z, Liu J, He T, Liu C. The predictive value of NLR, SII, and complement 3 in treatment response for systemic lupus erythematosus with immune thrombocytopenia. Front Immunol. 2025 Jul 29;16.
  • 19. Elmeazawy R, S.Qassem S, M. Morad L. The prognostic value of the systemic immune-inflammatory index and the systemic inflammation response index in pediatric immune thrombocytopenia. Egyptian Pediatric Association Gazette. 2025 May 19;73(1).
  • 20. Wu YF, Huang WH, Gu MH, Lin SR, Chu SC, Wang TF, et al. Higher CD56+ or CD2+ lymphocyte percentage predicts poor steroid response in patients with immune thrombocytopenia. Thromb Res. 2019 Nov 1;183:63–8.
  • 21. Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine [Internet]. 2015 Jul 1 [cited 2025 Nov 8];74(1):5–17.
  • 22. Žibřidová K, Souček O, Krčmová LK, Jankovičová K, Gančarčíková M, Pejková MA, et al. Lymphocyte subpopulations: a potential predictor of a response in patients with immune thrombocytopenia. Hematology (United Kingdom). 2024;29(1).
  • 23. Stimpson ML, Lait PJP, Schewitz-Bowers LP, Williams EL, Thirlwall KF, Lee RWJ, et al. IL-10 and IL-17 expression by CD4+ T cells is altered in corticosteroid refractory immune thrombocytopenia (ITP). Journal of Thrombosis and Haemostasis [Internet]. 2020 Oct 1 [cited 2025 Nov 8];18(10):2712–20.
  • 24. Qiao J, Liu Y, Li X, Xia Y, Wu Y, Li D, et al. Elevated expression of NLRP3 in patients with immune thrombocytopenia. Immunol Res [Internet]. 2016 Apr 1 [cited 2025 Nov 8];64(2):431–7.
  • 25. Yu J, Hua M, Zhao X, Wang R, Zhong C, Zhang C, et al. NF- κ B-94ins/del ATTG Genotype Contributes to the Susceptibility and Imbalanced Th17 Cells in Patients with Immune Thrombocytopenia. J Immunol Res [Internet]. 2018 [cited 2025 Nov 8];2018.
  • 26. Asoglu V, Umit EG, Demir M. A biomarker and therapeutical target in immune thrombocytopenia: TNF receptor-associated factor 6. Biomark Med [Internet]. 2019 Jan 1 [cited 2025 Nov 8];13(1):27–31.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İç Hastalıkları
Bölüm Araştırma Makalesi
Yazarlar

Fazıl Cagrı Hunutlu 0000-0002-4991-9830

Vildan Ozkocaman 0000-0003-0014-7398

Kübra Akay Ünverdi 0009-0002-0460-5130

Hikmet Öztop 0000-0002-0199-3791

İbrahim Ethem Pınar 0000-0001-9907-1498

Vildan Gürsoy 0000-0002-3645-9345

Tuba Ersal 0000-0001-5419-3221

Fahir Özkalemkaş 0000-0001-9710-134X

Gönderilme Tarihi 12 Kasım 2025
Kabul Tarihi 25 Aralık 2025
Yayımlanma Tarihi 11 Şubat 2026
DOI https://doi.org/10.20515/otd.1820881
IZ https://izlik.org/JA65EF48KG
Yayımlandığı Sayı Yıl 2026 Cilt: 48 Sayı: 2

Kaynak Göster

Vancouver 1.Hunutlu FC, Ozkocaman V, Akay Ünverdi K, Öztop H, Pınar İE, Gürsoy V, vd. Systemic Immune-Inflammation Index (SII) as a Predictor of Treatment Response in Primary Immune Thrombocytopenia. Osmangazi Tıp Dergisi [Internet]. 01 Şubat 2026;48(2):236-45. Erişim adresi: https://izlik.org/JA65EF48KG


13299        13308       13306       13305    13307  1330126978