Research Article
BibTex RIS Cite

Static Analysis of the Most Weakness Part of Temporale Bone Using Finite Element Method and Its Clinical Importance Sonlu Elemanlar Yöntemi Kullanılarak Temporal Kemiğin Zayıf Noktalarının Statik Analizi ve Klinik Uygulaması

Year 2017, Volume: 39 Issue: 2, 11 - 17, 25.04.2017
https://doi.org/10.20515/otd.308056

Abstract

Abstract:
Human body have a complex structure. So,
examine this structure require advanced level of engineering tools. In this
study, temporale bones obtained from six different person were examined under
the pressure of 5000 Pa. Stresses occurred on these bones under the applied
pressure were determined using ANSYS Workbench finite element software. Total
deformations were seen always on squamous part of the bones. This situation can
be important for the clinical relevance of temporal trauma.



Keywords: Biomechanics, Finite
element method, Temporale bone


Öz: İnsan
vücudu karmaşık bir yapıya sahiptir. Bu nedenle bu yapıyı incelemek için ileri
düzeyde mühendislik araçlarına gereksinim vardır. Bu çalışmada, 5000 Pa
basınçta altı farklı kişiden elde edilen temporal kemikler incelenmiştir. Bu
basınç altında kemikler üzerinde meydana gelen gerilmeler, ANSYS Workbench
yazılımı ile sonlu elemanlar yöntemi kullanılarak belirlenmiştir. Toplam
deformasyonlar genellikle kemiklerin skuamoz bölgelerinde görülmüştür. Bu durum,
temporal travmaların klinik açıdan değerlendirilmesinde önemlidir.



Anahtar Kelimeler: Biyomekanik,
Sonlu elemanlar yöntemi, Temporal kemik

References

  • 1. Reisser C, Schubert O, Forsting M, Sartor K. (1996) Anatomy of the Temporal Bone: Detailed Three-Dimensional Display Based on Image Data from High-Resolution Helical CT: A Preliminary Report. Otology & Neurotology 17 (3):473-479
  • 2. Calhoun P.S, Kuszyk B.S, Heath D.G, Carley J.C, Fishman E.K. (1999) Three-dimensional Volume Rendering of Spiral CT Data: Theory and Method. RadioGraphics 19 (3):745-764. doi:doi:10.1148/radiographics.19.3.g99ma14745
  • 3. Jun B-C, Song S-W, Cho J-E, Park C-S, Lee D-H, Chang K-H, Yeo S-W. (2005) Three-dimensional reconstruction based on images from spiral high-resolution computed tomography of the temporal bone: anatomy and clinical application. The Journal of Laryngology & Otology 119 (09):693-698. doi:doi:10.1258/0022215054797862
  • 4. Soames R.W. (1995) Skeletal system. In: Williams PL (ed) Gray’s Anatomy. 38 edn. Churchill Livingstone, Great Britain, pp 589-593
  • 5. Hliňáková P, Dostálová T, Daněk J, Nedoma J, Hlaváček I. (2010) Temporomandibular joint and its two-dimensional and three-dimensional modelling. Mathematics and Computers in Simulation 80 (6):1256-1268. doi:http://dx.doi.org/10.1016/j.matcom.2009.08.007
  • 6. Bagci E. (2009) Reverse engineering applications for recovery of broken or worn parts and re-manufacturing: Three case studies. Advances in Engineering Software 40 (6):407-418. doi:http://dx.doi.org/10.1016/j.advengsoft.2008.07.003
  • 7. Várady T, Martin R.R, Cox J. (1997) Reverse engineering of geometric models—an introduction. Computer-Aided Design 29 (4):255-268. doi:http://dx.doi.org/10.1016/S0010-4485(96)00054-1
  • 8. Gan R.Z, Sun Q. Finite element modeling of human ear with external ear canal and middle ear cavity. In: Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint, 2002 2002. pp 264-265 vol.261. doi:10.1109/iembs.2002.1134484
  • 9. Gan R.Z, Sun Q, Dyer R.K.J, Chang K-H, Dormer K.J. (2002) Three-dimensional Modeling of Middle Ear Biomechanics and Its Applications. Otology & Neurotology 23 (3):271-280
  • 10. Lee C-F, Chen P-R, Lee W-J, Chou Y-F, Chen J-H, Liu T-C. (2010) Computer Aided Modeling of Human Mastoid Cavity Biomechanics Using Finite Element Analysis. EURASIP Journal on Advances in Signal Processing 2010 (1):203037
  • 11. Beer H.J, Bornitz M, Hardtke H.J, Schmidt R, Hofmann G, Vogel U, Zahnert T, KB. H. (1999) Modelling of Components of the Human Middle Ear and Simulation of Their Dynamic Behaviour. Audiol & Neurootol 4 (3-4):156-16
Year 2017, Volume: 39 Issue: 2, 11 - 17, 25.04.2017
https://doi.org/10.20515/otd.308056

Abstract

References

  • 1. Reisser C, Schubert O, Forsting M, Sartor K. (1996) Anatomy of the Temporal Bone: Detailed Three-Dimensional Display Based on Image Data from High-Resolution Helical CT: A Preliminary Report. Otology & Neurotology 17 (3):473-479
  • 2. Calhoun P.S, Kuszyk B.S, Heath D.G, Carley J.C, Fishman E.K. (1999) Three-dimensional Volume Rendering of Spiral CT Data: Theory and Method. RadioGraphics 19 (3):745-764. doi:doi:10.1148/radiographics.19.3.g99ma14745
  • 3. Jun B-C, Song S-W, Cho J-E, Park C-S, Lee D-H, Chang K-H, Yeo S-W. (2005) Three-dimensional reconstruction based on images from spiral high-resolution computed tomography of the temporal bone: anatomy and clinical application. The Journal of Laryngology & Otology 119 (09):693-698. doi:doi:10.1258/0022215054797862
  • 4. Soames R.W. (1995) Skeletal system. In: Williams PL (ed) Gray’s Anatomy. 38 edn. Churchill Livingstone, Great Britain, pp 589-593
  • 5. Hliňáková P, Dostálová T, Daněk J, Nedoma J, Hlaváček I. (2010) Temporomandibular joint and its two-dimensional and three-dimensional modelling. Mathematics and Computers in Simulation 80 (6):1256-1268. doi:http://dx.doi.org/10.1016/j.matcom.2009.08.007
  • 6. Bagci E. (2009) Reverse engineering applications for recovery of broken or worn parts and re-manufacturing: Three case studies. Advances in Engineering Software 40 (6):407-418. doi:http://dx.doi.org/10.1016/j.advengsoft.2008.07.003
  • 7. Várady T, Martin R.R, Cox J. (1997) Reverse engineering of geometric models—an introduction. Computer-Aided Design 29 (4):255-268. doi:http://dx.doi.org/10.1016/S0010-4485(96)00054-1
  • 8. Gan R.Z, Sun Q. Finite element modeling of human ear with external ear canal and middle ear cavity. In: Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint, 2002 2002. pp 264-265 vol.261. doi:10.1109/iembs.2002.1134484
  • 9. Gan R.Z, Sun Q, Dyer R.K.J, Chang K-H, Dormer K.J. (2002) Three-dimensional Modeling of Middle Ear Biomechanics and Its Applications. Otology & Neurotology 23 (3):271-280
  • 10. Lee C-F, Chen P-R, Lee W-J, Chou Y-F, Chen J-H, Liu T-C. (2010) Computer Aided Modeling of Human Mastoid Cavity Biomechanics Using Finite Element Analysis. EURASIP Journal on Advances in Signal Processing 2010 (1):203037
  • 11. Beer H.J, Bornitz M, Hardtke H.J, Schmidt R, Hofmann G, Vogel U, Zahnert T, KB. H. (1999) Modelling of Components of the Human Middle Ear and Simulation of Their Dynamic Behaviour. Audiol & Neurootol 4 (3-4):156-16
There are 11 citations in total.

Details

Subjects Health Care Administration
Journal Section ORİJİNAL MAKALE
Authors

Hilmi Özden

Kadir Gök This is me

Sermet İnal This is me

Ferruh Taşpınar This is me

Sezan Orak This is me

Semih Öz This is me

Eyyüb Gülbandılar This is me

Publication Date April 25, 2017
Published in Issue Year 2017 Volume: 39 Issue: 2

Cite

Vancouver Özden H, Gök K, İnal S, Taşpınar F, Orak S, Öz S, Gülbandılar E. Static Analysis of the Most Weakness Part of Temporale Bone Using Finite Element Method and Its Clinical Importance Sonlu Elemanlar Yöntemi Kullanılarak Temporal Kemiğin Zayıf Noktalarının Statik Analizi ve Klinik Uygulaması. Osmangazi Tıp Dergisi. 2017;39(2):11-7.


13299        13308       13306       13305    13307  1330126978