Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Anthracycline Related Arterial Stiffness in Childhood Cancer Survivors

Yıl 2021, Cilt: 43 Sayı: 3, 266 - 272, 07.05.2021
https://doi.org/10.20515/otd.853675

Öz

Childhood cancer survivors have a significantly increased risk of cardiovascular morbidity and mortality. Improved screening methods are needed for early detection of cardiotoxicity. The aim of the study is to evaluate arterial stiffness as an indicator of vascular damage by oscillometric pulse wave analysis in childhood cancer survivors. A total of 38 patients and 25 age and gender matched healthy volunteers were included in this cross-sectional single centre study. All participants, underwent evaluation of arterial stiffness through non-invasive measurement of hemodynamic parameters such as pulse wave velocity (PWV) and central systolic blood pressure (c-SBP) with the Mobil-O-Graph® pulse wave analysis device. Left ventricular ejection fraction (LVEF) and left ventricular mass index (LVMI) were obtained by M-mode echocardiography. The median age of the childhood cancer survivors was 12.5 (4.25-18) and the median duration time after end of chemotherapy was 36 (12-116) months. Both groups were statistically similar in age, body mass index, LVEF and LVMI. Childhood cancer survivors had significantly lower peripheral systolic blood pressure compared to controls. Average c-SBP and PWV were similar between groups. Childhood cancer survivors > 15 years old also had similar PWV value with those < 15 years old. There were no signs of arterial stiffness in childhood cancer survivors late after chemotherapy according to the ambulatory oscillometric PWA. Longer follow-up duration may be required to determination of subclinical vascular damage

Kaynakça

  • 1. Mizia-Stec K, Goscinska A, Mizia M, et al. Anthracycline chemotherapy impairs the structure and di- astolic function of the left ventricle and induces negative arterial remod- elling. Kardiol Pol. 2013;71:681– 90.
  • 1. Mizia-Stec K, Goscinska A, Mizia M, et al. Anthracycline chemotherapy impairs the structure and di- astolic function of the left ventricle and induces negative arterial remod- elling. Kardiol Pol. 2013;71:681– 90.
  • 2. Frye JN, Sutterfield SL, Caldwell JT, et al. Vascular and autonomic changes in adult cancer pa- tients receiving anticancer chemotherapy. J Appl Physiol. 2018;125:198–204.
  • 2. Frye JN, Sutterfield SL, Caldwell JT, et al. Vascular and autonomic changes in adult cancer pa- tients receiving anticancer chemotherapy. J Appl Physiol. 2018;125:198–204.
  • 3. Alivon M, Giroux J, Briet M, et al. Large artery stiffness and hypertension after antiangiogenic drugs: in- fluence on cancer progression. J Hypertens. 2015;33:1310–17.
  • 3. Alivon M, Giroux J, Briet M, et al. Large artery stiffness and hypertension after antiangiogenic drugs: in- fluence on cancer progression. J Hypertens. 2015;33:1310–17.
  • 4. Drafts BC, Twomley KM, D’Agostino R Jr, et al. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging. 2013;6:877–85.
  • 4. Drafts BC, Twomley KM, D’Agostino R Jr, et al. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging. 2013;6:877–85.
  • 5. Parr SK, Liang J, Schadler KL, et al. Anticancer Therapy-Related Increases in Arterial Stiffness: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2020; 21;9(14):e015598. doi: 10.1161/JAHA.119.015598.
  • 5. Parr SK, Liang J, Schadler KL, et al. Anticancer Therapy-Related Increases in Arterial Stiffness: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2020; 21;9(14):e015598. doi: 10.1161/JAHA.119.015598.
  • 6. Vanderschuren MM, Uiterwaal CS, van der Ent CK, et al. Feasibility and characteristics of arterial stiffness measurement in preschool children. Eur J Prev Cardiol 2017;24:1895-1902.
  • 6. Vanderschuren MM, Uiterwaal CS, van der Ent CK, et al. Feasibility and characteristics of arterial stiffness measurement in preschool children. Eur J Prev Cardiol 2017;24:1895-1902.
  • 7. Tokgöz S, Yılmaz D, Tokgöz Y, et al. The evaluation of arterial stiffness of essential hypertension and white coat hypertension in children: A case-control study. Cardiol Young 2018;28:403-8.
  • 7. Tokgöz S, Yılmaz D, Tokgöz Y, et al. The evaluation of arterial stiffness of essential hypertension and white coat hypertension in children: A case-control study. Cardiol Young 2018;28:403-8.
  • 8. Lopez L, Colan SD, Frommelt PC, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 2010;23:465–95.
  • 8. Lopez L, Colan SD, Frommelt PC, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 2010;23:465–95.
  • 9. Devereux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986;57:450-58.
  • 9. Devereux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986;57:450-58.
  • 10. Chengode S. Left ventricular global systolic function assessment by echocardiography. Ann Card Anaesth. 2016;19:26–34.
  • 10. Chengode S. Left ventricular global systolic function assessment by echocardiography. Ann Card Anaesth. 2016;19:26–34.
  • 11. Häcker AL, Reiner B, Oberhoffer R, et al. Increased arterial stiffness in children with congenital heart disease. Eur J Prev Cardiol. 2018;25(1):103-9.
  • 11. Häcker AL, Reiner B, Oberhoffer R, et al. Increased arterial stiffness in children with congenital heart disease. Eur J Prev Cardiol. 2018;25(1):103-9.
  • 12. Armenian SH, Armstrong GT, Aune G, et al. Cardiovascular Disease in Survivors of Childhood Cancer: Insights Into Epidemiology, Pathophysiology, and Prevention. J Clin Oncol. 2018;36:2135-144.
  • 12. Armenian SH, Armstrong GT, Aune G, et al. Cardiovascular Disease in Survivors of Childhood Cancer: Insights Into Epidemiology, Pathophysiology, and Prevention. J Clin Oncol. 2018;36:2135-144.
  • 13. Armstrong GT, Liu Q, Yasui Y, et al: Late mortality among 5-year survivors of childhood can- cer: A summary from the Childhood Cancer Survivor Study. J Clin Oncol. 2009:27:2328-338.
  • 13. Armstrong GT, Liu Q, Yasui Y, et al: Late mortality among 5-year survivors of childhood can- cer: A summary from the Childhood Cancer Survivor Study. J Clin Oncol. 2009:27:2328-338.
  • 14. Van der Pal HJ, van Dalen EC, van Delden E, et al. High risk of symptomatic cardiac events in childhood cancer survivors. J Clin Oncol. 2012;30:1429-437.
  • 14. Van der Pal HJ, van Dalen EC, van Delden E, et al. High risk of symptomatic cardiac events in childhood cancer survivors. J Clin Oncol. 2012;30:1429-437.
  • 15. Bansal N, Amdani SM, Hutchins KK, et al. Cardiovascular disease in survivors of childhood cancer. Curr Opin Pediatr. 2018;30(5):628-38.
  • 15. Bansal N, Amdani SM, Hutchins KK, et al. Cardiovascular disease in survivors of childhood cancer. Curr Opin Pediatr. 2018;30(5):628-38.
  • 16. American Academy of Pediatrics Section on Hematology/Oncology Children’s Oncology Group. Long-term follow-up care for pediatric cancer survivors. Pediatrics 2009;123:906–15.
  • 16. American Academy of Pediatrics Section on Hematology/Oncology Children’s Oncology Group. Long-term follow-up care for pediatric cancer survivors. Pediatrics 2009;123:906–15.
  • 17. Leger K, Slone T, Lemler M, et al. Subclinical cardiotoxicity in childhood cancer survivors exposed to very low dose anthracycline therapy. Pediatr Blood Cancer. 2015;62(1):123-27.
  • 17. Leger K, Slone T, Lemler M, et al. Subclinical cardiotoxicity in childhood cancer survivors exposed to very low dose anthracycline therapy. Pediatr Blood Cancer. 2015;62(1):123-27.
  • 18. Lipshultz SE, Lipsitz SR, Sallan SE, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol 2005; 23:2629 – 636.
  • 18. Lipshultz SE, Lipsitz SR, Sallan SE, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol 2005; 23:2629 – 636.
  • 19. von Korn P, Müller J, Quell C, et al. Health-Related Physical Fitness and Arterial Stiffness in Childhood Cancer Survivors. Front Cardiovasc Med. 2019;15;6:63. doi: 10.3389/fcvm.2019.00063.
  • 19. von Korn P, Müller J, Quell C, et al. Health-Related Physical Fitness and Arterial Stiffness in Childhood Cancer Survivors. Front Cardiovasc Med. 2019;15;6:63. doi: 10.3389/fcvm.2019.00063.
  • 20. Gotte M, Kesting SV, Winter CC, et al. Motor performance in children and adolescents with cancer at the end of acute treatment phase. Eur J Pediatr. 2015; 174:791–99.
  • 20. Gotte M, Kesting SV, Winter CC, et al. Motor performance in children and adolescents with cancer at the end of acute treatment phase. Eur J Pediatr. 2015; 174:791–99.
  • 21. Wright MJ, Halton JM, Martin RF, et al. Long-term gross motor performance following treatment for acute lymphoblastic leukemia. Med Pediatr Oncol. 1998;31:86–90.
  • 21. Wright MJ, Halton JM, Martin RF, et al. Long-term gross motor performance following treatment for acute lymphoblastic leukemia. Med Pediatr Oncol. 1998;31:86–90.
  • 22. Sutton-Tyrrell K, Najjar SS, Boudreau RM, et al. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation 2005;111:3384–390.
  • 22. Sutton-Tyrrell K, Najjar SS, Boudreau RM, et al. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation 2005;111:3384–390.
  • 23. Brouwer CA, Postma A, Hooimeijer HL, et al: Endothelial damage in long-term survivors of childhood cancer. J Clin Oncol 2013;31:3906-913.
  • 23. Brouwer CA, Postma A, Hooimeijer HL, et al: Endothelial damage in long-term survivors of childhood cancer. J Clin Oncol 2013;31:3906-913.
  • 24. Adams MJ, Lipshultz SE. Pathophysiology of anthracycline and radiation associated cardiomyopathies: implications for screening and prevention. Pediatr Blood Cancer. 2005;44(7):600-6.
  • 24. Adams MJ, Lipshultz SE. Pathophysiology of anthracycline and radiation associated cardiomyopathies: implications for screening and prevention. Pediatr Blood Cancer. 2005;44(7):600-6.
  • 25. Keiser T, Gaser D, Peters C, et al. Short-Term Consequences of Pediatric Anti-cancer Treatment Regarding Blood Pressure, Motor Performance, Physical Activity and Reintegration Into Sports Structures. Front Pediatr. 2020;8:463. doi: 10.3389/fped.2020.00463.
  • 25. Keiser T, Gaser D, Peters C, et al. Short-Term Consequences of Pediatric Anti-cancer Treatment Regarding Blood Pressure, Motor Performance, Physical Activity and Reintegration Into Sports Structures. Front Pediatr. 2020;8:463. doi: 10.3389/fped.2020.00463.

Çocukluk Çağı Kanser Sağ Kalanlarında Antrasiklin İlişkili Arteriyel Sertliğin Değerlendirilmesi

Yıl 2021, Cilt: 43 Sayı: 3, 266 - 272, 07.05.2021
https://doi.org/10.20515/otd.853675

Öz

Çocukluk çağı kanser sağ kalanlarının kardiyovasküler morbidite ve mortalite riski önemli ölçüde artmıştır. Kardiyovasküler toksisitenin erken tespiti için gelişmiş tarama yöntemlerine ihtiyaç vardır. Çalışmanın amacı, çocukluk çağı kanseri sağ kalanlarında osilometrik nabız dalga analizi ile vasküler hasarın bir göstergesi olan arteriyel sertliği değerlendirmektir. Bu kesitsel, tek merkezli çalışmaya toplam 38 hasta ve 25 yaş ve cinsiyet uyumlu sağlıklı gönüllü çalışmaya dahil edildi. Tüm katılımcılar Mobil-O-Graph® marka nabız dalga analizi cihazı ile nabız dalga hızı (PWV) ve merkezi sistolik kan basıncı (c-SBP) gibi hemodinamik parametrelerin invazif olmayan ölçümü yoluyla arteriyel sertliğin değerlendirmesine tabi tutuldu. Sol ventrikül ejeksiyon fraksiyonu (LVEF) ve sol ventrikül kitle indeksi (LVMI) M-mod ekokardiyografi ile ölçüldü. Çocukluk çağı kanseri sağ kalanlarının medyan yaşı 12,5 (4,25-18) ve kemoterapi bitiminden sonraki medyan süresi 36 (12-116) aydı. Her iki grup da yaş, vücut kitle indeksi, LVEF ve LVMI açısından istatistiksel olarak benzerdi. Çocukluk çağı kanseri sağ kalanları, kontrollere kıyasla daha düşük periferik sistolik kan basıncına sahipti. Ortalama c-SBP ve PWV gruplar arasında benzerdi. Onbeş yaşından büyük çocukluk çağı kanseri sağ kalanları, 15 yaşından küçüklerle benzer PWV değerine sahipti. Ambulatuar osilometrik PWA ile çocukluk çağı kanseri sağ kalanlarında kronik dönemde subklinik arteriyel sertlik bulgusu tespit edilmedi. Subklinik vasküler hasarın tespiti için daha uzun takip süresi gerekli olabilir.

Kaynakça

  • 1. Mizia-Stec K, Goscinska A, Mizia M, et al. Anthracycline chemotherapy impairs the structure and di- astolic function of the left ventricle and induces negative arterial remod- elling. Kardiol Pol. 2013;71:681– 90.
  • 1. Mizia-Stec K, Goscinska A, Mizia M, et al. Anthracycline chemotherapy impairs the structure and di- astolic function of the left ventricle and induces negative arterial remod- elling. Kardiol Pol. 2013;71:681– 90.
  • 2. Frye JN, Sutterfield SL, Caldwell JT, et al. Vascular and autonomic changes in adult cancer pa- tients receiving anticancer chemotherapy. J Appl Physiol. 2018;125:198–204.
  • 2. Frye JN, Sutterfield SL, Caldwell JT, et al. Vascular and autonomic changes in adult cancer pa- tients receiving anticancer chemotherapy. J Appl Physiol. 2018;125:198–204.
  • 3. Alivon M, Giroux J, Briet M, et al. Large artery stiffness and hypertension after antiangiogenic drugs: in- fluence on cancer progression. J Hypertens. 2015;33:1310–17.
  • 3. Alivon M, Giroux J, Briet M, et al. Large artery stiffness and hypertension after antiangiogenic drugs: in- fluence on cancer progression. J Hypertens. 2015;33:1310–17.
  • 4. Drafts BC, Twomley KM, D’Agostino R Jr, et al. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging. 2013;6:877–85.
  • 4. Drafts BC, Twomley KM, D’Agostino R Jr, et al. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging. 2013;6:877–85.
  • 5. Parr SK, Liang J, Schadler KL, et al. Anticancer Therapy-Related Increases in Arterial Stiffness: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2020; 21;9(14):e015598. doi: 10.1161/JAHA.119.015598.
  • 5. Parr SK, Liang J, Schadler KL, et al. Anticancer Therapy-Related Increases in Arterial Stiffness: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2020; 21;9(14):e015598. doi: 10.1161/JAHA.119.015598.
  • 6. Vanderschuren MM, Uiterwaal CS, van der Ent CK, et al. Feasibility and characteristics of arterial stiffness measurement in preschool children. Eur J Prev Cardiol 2017;24:1895-1902.
  • 6. Vanderschuren MM, Uiterwaal CS, van der Ent CK, et al. Feasibility and characteristics of arterial stiffness measurement in preschool children. Eur J Prev Cardiol 2017;24:1895-1902.
  • 7. Tokgöz S, Yılmaz D, Tokgöz Y, et al. The evaluation of arterial stiffness of essential hypertension and white coat hypertension in children: A case-control study. Cardiol Young 2018;28:403-8.
  • 7. Tokgöz S, Yılmaz D, Tokgöz Y, et al. The evaluation of arterial stiffness of essential hypertension and white coat hypertension in children: A case-control study. Cardiol Young 2018;28:403-8.
  • 8. Lopez L, Colan SD, Frommelt PC, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 2010;23:465–95.
  • 8. Lopez L, Colan SD, Frommelt PC, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 2010;23:465–95.
  • 9. Devereux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986;57:450-58.
  • 9. Devereux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986;57:450-58.
  • 10. Chengode S. Left ventricular global systolic function assessment by echocardiography. Ann Card Anaesth. 2016;19:26–34.
  • 10. Chengode S. Left ventricular global systolic function assessment by echocardiography. Ann Card Anaesth. 2016;19:26–34.
  • 11. Häcker AL, Reiner B, Oberhoffer R, et al. Increased arterial stiffness in children with congenital heart disease. Eur J Prev Cardiol. 2018;25(1):103-9.
  • 11. Häcker AL, Reiner B, Oberhoffer R, et al. Increased arterial stiffness in children with congenital heart disease. Eur J Prev Cardiol. 2018;25(1):103-9.
  • 12. Armenian SH, Armstrong GT, Aune G, et al. Cardiovascular Disease in Survivors of Childhood Cancer: Insights Into Epidemiology, Pathophysiology, and Prevention. J Clin Oncol. 2018;36:2135-144.
  • 12. Armenian SH, Armstrong GT, Aune G, et al. Cardiovascular Disease in Survivors of Childhood Cancer: Insights Into Epidemiology, Pathophysiology, and Prevention. J Clin Oncol. 2018;36:2135-144.
  • 13. Armstrong GT, Liu Q, Yasui Y, et al: Late mortality among 5-year survivors of childhood can- cer: A summary from the Childhood Cancer Survivor Study. J Clin Oncol. 2009:27:2328-338.
  • 13. Armstrong GT, Liu Q, Yasui Y, et al: Late mortality among 5-year survivors of childhood can- cer: A summary from the Childhood Cancer Survivor Study. J Clin Oncol. 2009:27:2328-338.
  • 14. Van der Pal HJ, van Dalen EC, van Delden E, et al. High risk of symptomatic cardiac events in childhood cancer survivors. J Clin Oncol. 2012;30:1429-437.
  • 14. Van der Pal HJ, van Dalen EC, van Delden E, et al. High risk of symptomatic cardiac events in childhood cancer survivors. J Clin Oncol. 2012;30:1429-437.
  • 15. Bansal N, Amdani SM, Hutchins KK, et al. Cardiovascular disease in survivors of childhood cancer. Curr Opin Pediatr. 2018;30(5):628-38.
  • 15. Bansal N, Amdani SM, Hutchins KK, et al. Cardiovascular disease in survivors of childhood cancer. Curr Opin Pediatr. 2018;30(5):628-38.
  • 16. American Academy of Pediatrics Section on Hematology/Oncology Children’s Oncology Group. Long-term follow-up care for pediatric cancer survivors. Pediatrics 2009;123:906–15.
  • 16. American Academy of Pediatrics Section on Hematology/Oncology Children’s Oncology Group. Long-term follow-up care for pediatric cancer survivors. Pediatrics 2009;123:906–15.
  • 17. Leger K, Slone T, Lemler M, et al. Subclinical cardiotoxicity in childhood cancer survivors exposed to very low dose anthracycline therapy. Pediatr Blood Cancer. 2015;62(1):123-27.
  • 17. Leger K, Slone T, Lemler M, et al. Subclinical cardiotoxicity in childhood cancer survivors exposed to very low dose anthracycline therapy. Pediatr Blood Cancer. 2015;62(1):123-27.
  • 18. Lipshultz SE, Lipsitz SR, Sallan SE, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol 2005; 23:2629 – 636.
  • 18. Lipshultz SE, Lipsitz SR, Sallan SE, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol 2005; 23:2629 – 636.
  • 19. von Korn P, Müller J, Quell C, et al. Health-Related Physical Fitness and Arterial Stiffness in Childhood Cancer Survivors. Front Cardiovasc Med. 2019;15;6:63. doi: 10.3389/fcvm.2019.00063.
  • 19. von Korn P, Müller J, Quell C, et al. Health-Related Physical Fitness and Arterial Stiffness in Childhood Cancer Survivors. Front Cardiovasc Med. 2019;15;6:63. doi: 10.3389/fcvm.2019.00063.
  • 20. Gotte M, Kesting SV, Winter CC, et al. Motor performance in children and adolescents with cancer at the end of acute treatment phase. Eur J Pediatr. 2015; 174:791–99.
  • 20. Gotte M, Kesting SV, Winter CC, et al. Motor performance in children and adolescents with cancer at the end of acute treatment phase. Eur J Pediatr. 2015; 174:791–99.
  • 21. Wright MJ, Halton JM, Martin RF, et al. Long-term gross motor performance following treatment for acute lymphoblastic leukemia. Med Pediatr Oncol. 1998;31:86–90.
  • 21. Wright MJ, Halton JM, Martin RF, et al. Long-term gross motor performance following treatment for acute lymphoblastic leukemia. Med Pediatr Oncol. 1998;31:86–90.
  • 22. Sutton-Tyrrell K, Najjar SS, Boudreau RM, et al. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation 2005;111:3384–390.
  • 22. Sutton-Tyrrell K, Najjar SS, Boudreau RM, et al. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation 2005;111:3384–390.
  • 23. Brouwer CA, Postma A, Hooimeijer HL, et al: Endothelial damage in long-term survivors of childhood cancer. J Clin Oncol 2013;31:3906-913.
  • 23. Brouwer CA, Postma A, Hooimeijer HL, et al: Endothelial damage in long-term survivors of childhood cancer. J Clin Oncol 2013;31:3906-913.
  • 24. Adams MJ, Lipshultz SE. Pathophysiology of anthracycline and radiation associated cardiomyopathies: implications for screening and prevention. Pediatr Blood Cancer. 2005;44(7):600-6.
  • 24. Adams MJ, Lipshultz SE. Pathophysiology of anthracycline and radiation associated cardiomyopathies: implications for screening and prevention. Pediatr Blood Cancer. 2005;44(7):600-6.
  • 25. Keiser T, Gaser D, Peters C, et al. Short-Term Consequences of Pediatric Anti-cancer Treatment Regarding Blood Pressure, Motor Performance, Physical Activity and Reintegration Into Sports Structures. Front Pediatr. 2020;8:463. doi: 10.3389/fped.2020.00463.
  • 25. Keiser T, Gaser D, Peters C, et al. Short-Term Consequences of Pediatric Anti-cancer Treatment Regarding Blood Pressure, Motor Performance, Physical Activity and Reintegration Into Sports Structures. Front Pediatr. 2020;8:463. doi: 10.3389/fped.2020.00463.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm ORİJİNAL MAKALELER / ORIGINAL ARTICLES
Yazarlar

Pelin Kosger 0000-0002-3926-9002

Munise Çalışkan Bu kişi benim 0000-0001-5566-1867

Zeynep Canan Özdemir 0000-0002-9172-9627

Birsen Ucar 0000-0002-7746-6058

Ozcan Bor 0000-0002-1662-3259

Yayımlanma Tarihi 7 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 43 Sayı: 3

Kaynak Göster

Vancouver Kosger P, Çalışkan M, Özdemir ZC, Ucar B, Bor O. Evaluation of Anthracycline Related Arterial Stiffness in Childhood Cancer Survivors. Osmangazi Tıp Dergisi. 2021;43(3):266-72.


13299        13308       13306       13305    13307  1330126978