Review
BibTex RIS Cite

The Role of Oxidative Stress in Neurodegenerative Diseases

Year 2021, Volume: 43 Issue: 6, 696 - 704, 24.09.2021
https://doi.org/10.20515/otd.845217

Abstract

Recently, there is increasing evidence that oxidative stress has an important role in neurodegenerative diseases. Oxidative stress and its effects cause damage to critical brain regions; thus, it is thought to occur with the disruption in the mechanisms regulating neuronal signal communication. Clinical studies have found significant changes in antioxidant enzyme, lipid peroxidation, and nitric oxide levels in patients suffering from various neurodegenerative diseases. In the mitochondrial complex, reactive oxygen radicals are formed by the escape of some electrons from the chain during electron flow and mitochondrial dysfunction develops with electron transport chain inhibition. Mitochondrial dysfunction and oxidative damage may cause permanent adverse effects in the nervous system by creating changes in the intracellular signaling system, intracellular calcium balance and DNA structure. In this article, the current information is reviewed and the relationship of neurodegenerative diseases with oxidative balance is analyzed through clinical, animal and cell culture studies.

References

  • 1. Shichiri M. The role of lipid peroxidation in neurological disorders. J Clin Biochem and Nutrition 2014; 54(3):151–160.
  • 2. Lan AP, Chen J, Chai ZF, et al. The neurotoxicity of iron, copper and cobalt in Parkinson’s disease through ROS-mediated mechanisms. Biometals 2016; 29:665–678.
  • 3. Kavas GÖ. Serbest Radikaller ve Organizma Üzerine Etkileri. Türkiye Klinikleri 1989; 9:1-8.
  • 4. Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochemical and Biophysical Research Communications 2017; 482(3):419–425.
  • 5. Pong K. Oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Expert Opinion on Biological Therapy 2003; 3(1): 127-139.
  • 6. Speciale SG. MPTP: Insights into parkinsonian neurodegeneration. Neurotoxicology and Teratology 2002; 24(5):607–620.
  • 7. Poh Loh K, Hong Huang S, De Silva R, et al. Oxidative stress: apoptosis in neuronal injury. Current Alzheimer Research 2006; 3(4), 327-337.
  • 8. Wang X, Michaelis EK. Selective neuronal vulnerability to oxidative stress in the brain. Frontiers in Aging Neuroscience 2010; 2:12-18.
  • 9. Lin L, Huang QX, Yang SS, et al. Melatonin in Alzheimer's disease. Int J Mol Sci 2013; 14(7):14575-14593.
  • 10. Ma T, Tan M-S, Yu J-T, et al. Resveratrol as a therapeutic agent for Alzheimer’s disease. Biomed Res Int 2014; 3505-3516.
  • 11. Erdem M, Akarsu S, Pan E, et al. Bipolar disorder and oxidative stress. Psychiatry and Behavioral Sci 2014; 4(2):70-77.
  • 12. Kraus RL, Pasieczny R, Lariosa‐Willingham K, et al. Antioxidant properties of minocycline: neuroprotection in an oxidative stress assay and direct radical‐scavenging activity. Journal of Neurochemistry 2005; 94(3):819-827.
  • 13. Kumar NS, Nisha N. Phytomedicines as potential inhibitors of β amyloid aggregation: significance to Alzheimer's disease. Chin J Nat Med 2014; 12(11):801-18.
  • 14. Xiong Z, Hongmei Z, Lu S, et al. Curcumin mediates presenilin-1 activity to reduce betaamyloid production in a model of Alzheimer's Disease. Pharmacol Rep 2011; 63(5):1101-1108.
  • 15. Ji S, Li S, Zhao X, et al. Protective role of phenylethanoid glycosides, Torenoside B and Savatiside A, in Alzheimer's disease. Exp Ther Med 2019; 17(5):3755-3767.
  • 16. Hur J, Pak SC, Koo BS, et al. Borneol alleviates oxidative stress via upregulation of Nrf2 and Bcl-2 in SH-SY5Y cells. Pharm Biol 2013; 51(1):30-5.
  • 17. Zhang X, Wang X, Hu X, et al. Neuroprotective effects of a Rhodiola crenulata extract on amyloid-β peptides (Aβ(1-42)) -induced cognitive deficits in rat models of Alzheimer's disease. Phytomedicine 2019; 57:331-338.
  • 18. Kantar Gok D, Hidisoglu E, Ocak GA, et al. Protective role of rosmarinic acid on amyloid beta 42-induced echoic memory decline: Implication of oxidative stress and cholinergic impairment. Neurochem Int, 2018; 118: 1-13.
  • 19. Khodadadian A, Hemmati-Dinarvand M, Kalantarycharvadeh A, et al. Candidate biomarkers for Parkinson’s disease. Biomedicine and Pharmacotherapy 2018; 104:699–704.
  • 20. Rao AV, Balachandran B. Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutritional neuroscience 2002; 5(5):291-309.
  • 21. Hwang O. Role of Oxidative Stress in Parkinson’s Disease. Experimental Neurobiology 2013; 22(1):11-19.
  • 22. Johnson WM, Wilson-Delfosse AL, Mieyal JJ. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 2012; 4(10):1399-1440.
  • 23. Aoyama K, Nakaki T. Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci 2013; 14(10):21021-21044.
  • 24. Baillet A, Chanteperdrix V, Trocmé C, et al. The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson’s disease. Neurochem Research 2010; 35(10):1530–1537.
  • 25. Dexter DT, Carter CJ, Wells FR, et al.. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 1989; 52:381–389.
  • 26. Sayre LM, Perry G, Harris PLR, et al. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem 2000; 74:270–279.
  • 27. Lewis SJG, Caldwell MA, Barker RA. Modern therapeutic approaches in Parkinson’s disease. Expert Reviews in Molecular Medicine 2003; 5(10):1–20.
  • 28. Sanyal J, Bandyopadhyay SK, Banerjee TK, et al. Plasma levels of lipid peroxides in patients with Parkinson’s disease. Eur Rev Med Pharmacol Sci 2009; 13(2):129-132.
  • 29. De Farias CC, Maes M, Bonıfácıo KL, et al. Highly specific changes in antioxidant levels and lipid peroxidation in Parkinson’s disease and its progression: Disease and staging biomarkers and new drug targets. Neuroscience Letters 2016; 617:66–71.
  • 30. Barber SC, Shaw PJ. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radical Biology and Medicine 2010; 48(5):629-641.
  • 31. Barber SC, Mead RJ, Shaw PJ. Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 2006, 1762(11-12):1051-1067.
  • 32. Liu R, Li B, Flanagan SW, et al. Increased mitochondrial antioxidative activity or decreased oxygen free radical propagation prevent mutant SOD1-mediated motor neuron cell death and increase amyotrophic lateral sclerosis-like transgenic mouse survival. J Neurochem 2002; 80:488–500.
  • 33. Andreassen OA, Ferrante R, Klivenyi P, et al. Partial deficiency of manganese superoxide dismutase exacerbates a transgenic mouse model of amyotophic lateral sclerosis. Annals of Neurology 2000; 47:447–455.
  • 34. Sorolla MA, Reverter-Branchat G, Tamarit J, et al. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radical Biology and Medicine 2008; 45(5):667-678.
  • 35. Browne SE, Ferrante RJ, Beal MF. Oxidative stress in Huntington's disease. Brain pathology 1999; 9(1):147-163.
  • 36. Tellez-Nagel I, Johnson AB, Terry RD. Ultrastrucutural and histochemical study of cerebral biopsies in Huntington’s chorea. In: Barbeau A, Chase TN, Paulson GW, editors. Advances in Neurology, Raven Press, New York, 1973. p. 387-398.
  • 37. Horrobin DF, Manku MS, Morse-Fisher N, et al. Essential fatty acids in plasma phospholipids in schizophrenics. Biological Psychiatry 1989; 25:562–568.
  • 38. Lohr JB, Kuczenski R, Niculescu AB. Oxidative mechanisms and tardive dyskinesia. CNS drugs 2003; 17(1):47-62.
  • 39. Cho CH, Lee HJ. Oxidative stress and tardive dyskinesia: pharmacogenetic evidence. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2013; 46:207-213.
  • 40. De Araújo DP, Camboim TGM, Silva APM, et al. Behavioral and neurochemical effects of alpha lipoic acid associated with omega-3 in tardive dyskinesia induced by chronic haloperidol in rats. Canadian journal of physiology and pharmacology 2017; 95(7):837-843.
  • 41. Zou T, Ilangovan R, Yu F, et al. SMN protects cells against mutant SOD1 toxicity by increasing chaperone activity. Biochem Biophys Res Commun 2007; 364(4):850-855.
  • 42. Hayashi M, Araki S, Arai N, et al. Oxidative stress and disturbed glutamate transport in spinal muscular atrophy. Brain Dev 2002; 24(8):770-775.
  • 43. Hayashi M. Oxidative stress in developmental brain disorders. Neuropathology 2009, 29(1):1-8.
  • 44. Hua Y, Zhou J. Rpp20 interacts with SMN and is re-distributed into SMN granules in response to stress. Biochem Biophys Res Commun 2004; 314(1):268-276.
  • 45. Hua Y, Zhou J. Survival motor neuron protein facilitates assembly of stress granules. FEBS Lett 2004; 572(1-3):69-74.

Nörodejeneratif Hastalıklarda Oksidatif Stresin Rolü

Year 2021, Volume: 43 Issue: 6, 696 - 704, 24.09.2021
https://doi.org/10.20515/otd.845217

Abstract

Son dönemde oksidatif stresin nörodejeneratif hastalıklarda önemli rolü olduğuna dair bulgular artış göstermektedir. Oksidatif stres ve etkilerinin, kritik beyin bölgelerinde hasara neden olduğu; böylece nöronal sinyal iletişimini düzenleyen mekanizmalarda bozulma ile ortaya çıktığı düşünülmektedir. Klinik çalışmalarda, çeşitli nörodejeneratif hastalıklardan muzdarip hastalarda antioksidan enzim, lipid peroksidasyonu ve nitrik oksit düzeylerinde belirgin değişiklikler saptanmıştır. Mitokondri kompleksinde elektron akışı sırasında bazı elektronların zincirden kaçması ile reaktif oksijen radikalleri oluşmakta ve elektron transport zincir inhibisyonu ile mitokondrial işlev bozukluğu gelişmektedir. Mitokondrial işlev bozukluğu ve oksidatif hasar, hücre içi sinyal sisteminde, hücre içi kalsiyum dengesinde ve DNA yapısında değişiklikler oluşturarak sinir sisteminde kalıcı olumsuzluklara neden olabilir. Bu makalede, mevcut bilgiler gözden geçirilerek, klinik, hayvan ve hücre kültürü çalışmaları ile nörodejeneratif hastalıkların oksidatif denge ile ilişkisi analiz edilmiştir.

References

  • 1. Shichiri M. The role of lipid peroxidation in neurological disorders. J Clin Biochem and Nutrition 2014; 54(3):151–160.
  • 2. Lan AP, Chen J, Chai ZF, et al. The neurotoxicity of iron, copper and cobalt in Parkinson’s disease through ROS-mediated mechanisms. Biometals 2016; 29:665–678.
  • 3. Kavas GÖ. Serbest Radikaller ve Organizma Üzerine Etkileri. Türkiye Klinikleri 1989; 9:1-8.
  • 4. Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochemical and Biophysical Research Communications 2017; 482(3):419–425.
  • 5. Pong K. Oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Expert Opinion on Biological Therapy 2003; 3(1): 127-139.
  • 6. Speciale SG. MPTP: Insights into parkinsonian neurodegeneration. Neurotoxicology and Teratology 2002; 24(5):607–620.
  • 7. Poh Loh K, Hong Huang S, De Silva R, et al. Oxidative stress: apoptosis in neuronal injury. Current Alzheimer Research 2006; 3(4), 327-337.
  • 8. Wang X, Michaelis EK. Selective neuronal vulnerability to oxidative stress in the brain. Frontiers in Aging Neuroscience 2010; 2:12-18.
  • 9. Lin L, Huang QX, Yang SS, et al. Melatonin in Alzheimer's disease. Int J Mol Sci 2013; 14(7):14575-14593.
  • 10. Ma T, Tan M-S, Yu J-T, et al. Resveratrol as a therapeutic agent for Alzheimer’s disease. Biomed Res Int 2014; 3505-3516.
  • 11. Erdem M, Akarsu S, Pan E, et al. Bipolar disorder and oxidative stress. Psychiatry and Behavioral Sci 2014; 4(2):70-77.
  • 12. Kraus RL, Pasieczny R, Lariosa‐Willingham K, et al. Antioxidant properties of minocycline: neuroprotection in an oxidative stress assay and direct radical‐scavenging activity. Journal of Neurochemistry 2005; 94(3):819-827.
  • 13. Kumar NS, Nisha N. Phytomedicines as potential inhibitors of β amyloid aggregation: significance to Alzheimer's disease. Chin J Nat Med 2014; 12(11):801-18.
  • 14. Xiong Z, Hongmei Z, Lu S, et al. Curcumin mediates presenilin-1 activity to reduce betaamyloid production in a model of Alzheimer's Disease. Pharmacol Rep 2011; 63(5):1101-1108.
  • 15. Ji S, Li S, Zhao X, et al. Protective role of phenylethanoid glycosides, Torenoside B and Savatiside A, in Alzheimer's disease. Exp Ther Med 2019; 17(5):3755-3767.
  • 16. Hur J, Pak SC, Koo BS, et al. Borneol alleviates oxidative stress via upregulation of Nrf2 and Bcl-2 in SH-SY5Y cells. Pharm Biol 2013; 51(1):30-5.
  • 17. Zhang X, Wang X, Hu X, et al. Neuroprotective effects of a Rhodiola crenulata extract on amyloid-β peptides (Aβ(1-42)) -induced cognitive deficits in rat models of Alzheimer's disease. Phytomedicine 2019; 57:331-338.
  • 18. Kantar Gok D, Hidisoglu E, Ocak GA, et al. Protective role of rosmarinic acid on amyloid beta 42-induced echoic memory decline: Implication of oxidative stress and cholinergic impairment. Neurochem Int, 2018; 118: 1-13.
  • 19. Khodadadian A, Hemmati-Dinarvand M, Kalantarycharvadeh A, et al. Candidate biomarkers for Parkinson’s disease. Biomedicine and Pharmacotherapy 2018; 104:699–704.
  • 20. Rao AV, Balachandran B. Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutritional neuroscience 2002; 5(5):291-309.
  • 21. Hwang O. Role of Oxidative Stress in Parkinson’s Disease. Experimental Neurobiology 2013; 22(1):11-19.
  • 22. Johnson WM, Wilson-Delfosse AL, Mieyal JJ. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 2012; 4(10):1399-1440.
  • 23. Aoyama K, Nakaki T. Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci 2013; 14(10):21021-21044.
  • 24. Baillet A, Chanteperdrix V, Trocmé C, et al. The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson’s disease. Neurochem Research 2010; 35(10):1530–1537.
  • 25. Dexter DT, Carter CJ, Wells FR, et al.. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 1989; 52:381–389.
  • 26. Sayre LM, Perry G, Harris PLR, et al. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem 2000; 74:270–279.
  • 27. Lewis SJG, Caldwell MA, Barker RA. Modern therapeutic approaches in Parkinson’s disease. Expert Reviews in Molecular Medicine 2003; 5(10):1–20.
  • 28. Sanyal J, Bandyopadhyay SK, Banerjee TK, et al. Plasma levels of lipid peroxides in patients with Parkinson’s disease. Eur Rev Med Pharmacol Sci 2009; 13(2):129-132.
  • 29. De Farias CC, Maes M, Bonıfácıo KL, et al. Highly specific changes in antioxidant levels and lipid peroxidation in Parkinson’s disease and its progression: Disease and staging biomarkers and new drug targets. Neuroscience Letters 2016; 617:66–71.
  • 30. Barber SC, Shaw PJ. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radical Biology and Medicine 2010; 48(5):629-641.
  • 31. Barber SC, Mead RJ, Shaw PJ. Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 2006, 1762(11-12):1051-1067.
  • 32. Liu R, Li B, Flanagan SW, et al. Increased mitochondrial antioxidative activity or decreased oxygen free radical propagation prevent mutant SOD1-mediated motor neuron cell death and increase amyotrophic lateral sclerosis-like transgenic mouse survival. J Neurochem 2002; 80:488–500.
  • 33. Andreassen OA, Ferrante R, Klivenyi P, et al. Partial deficiency of manganese superoxide dismutase exacerbates a transgenic mouse model of amyotophic lateral sclerosis. Annals of Neurology 2000; 47:447–455.
  • 34. Sorolla MA, Reverter-Branchat G, Tamarit J, et al. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radical Biology and Medicine 2008; 45(5):667-678.
  • 35. Browne SE, Ferrante RJ, Beal MF. Oxidative stress in Huntington's disease. Brain pathology 1999; 9(1):147-163.
  • 36. Tellez-Nagel I, Johnson AB, Terry RD. Ultrastrucutural and histochemical study of cerebral biopsies in Huntington’s chorea. In: Barbeau A, Chase TN, Paulson GW, editors. Advances in Neurology, Raven Press, New York, 1973. p. 387-398.
  • 37. Horrobin DF, Manku MS, Morse-Fisher N, et al. Essential fatty acids in plasma phospholipids in schizophrenics. Biological Psychiatry 1989; 25:562–568.
  • 38. Lohr JB, Kuczenski R, Niculescu AB. Oxidative mechanisms and tardive dyskinesia. CNS drugs 2003; 17(1):47-62.
  • 39. Cho CH, Lee HJ. Oxidative stress and tardive dyskinesia: pharmacogenetic evidence. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2013; 46:207-213.
  • 40. De Araújo DP, Camboim TGM, Silva APM, et al. Behavioral and neurochemical effects of alpha lipoic acid associated with omega-3 in tardive dyskinesia induced by chronic haloperidol in rats. Canadian journal of physiology and pharmacology 2017; 95(7):837-843.
  • 41. Zou T, Ilangovan R, Yu F, et al. SMN protects cells against mutant SOD1 toxicity by increasing chaperone activity. Biochem Biophys Res Commun 2007; 364(4):850-855.
  • 42. Hayashi M, Araki S, Arai N, et al. Oxidative stress and disturbed glutamate transport in spinal muscular atrophy. Brain Dev 2002; 24(8):770-775.
  • 43. Hayashi M. Oxidative stress in developmental brain disorders. Neuropathology 2009, 29(1):1-8.
  • 44. Hua Y, Zhou J. Rpp20 interacts with SMN and is re-distributed into SMN granules in response to stress. Biochem Biophys Res Commun 2004; 314(1):268-276.
  • 45. Hua Y, Zhou J. Survival motor neuron protein facilitates assembly of stress granules. FEBS Lett 2004; 572(1-3):69-74.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section DERLEME
Authors

Güllü Kaymak 0000-0001-6309-0208

Hasan Aydın 0000-0002-8932-1542

Publication Date September 24, 2021
Published in Issue Year 2021 Volume: 43 Issue: 6

Cite

Vancouver Kaymak G, Aydın H. Nörodejeneratif Hastalıklarda Oksidatif Stresin Rolü. Osmangazi Tıp Dergisi. 2021;43(6):696-704.


13299        13308       13306       13305    13307  1330126978