Research Article
BibTex RIS Cite

Evaluation of the TRK-2P Instrument Reliability in Normal and Keratoconus Eyes: A Preliminary Observation

Year 2022, Volume: 44 Issue: 6, 773 - 778, 28.11.2022
https://doi.org/10.20515/otd.1111360

Abstract

To compare keratometry and corneal thickness measurements by the TRK-2P instrument (Topcon Medical Systems Inc., Oakland NJ) with the anterior cornea keratometry and pachymetry values obtained by the Pentacam-HR instrument (Oculus; Optikgeräte GmbH, Wetzlar, Germany). Patients who had full records of two both instruments in our databases were included in the observational study. Keratoconus diagnosed twenty-three eyes of twelve patients and thirty-two eyes of sixteen patients with no eye problem (controls) were included. The keratometry and the central corneal thickness (CCT) outputs were collected by TRK-2P and Pentacam-HR. The consistency of the mean anterior cornea keratometry and pachymetry data were correlated using the intraclass correlation coefficient (ICC). Means were statistically correlated using a Paired t-test seeking significant correlations (α=0.05). Mean keratometry of TRK-2P and Pentacam-HR were 42.64D±2.02 and 42.79D±1.95 in controls whereas, these were 47.64D±5.24 and 47.16D±4.65 in keratoconus, respectively. The mean differences in keratometry data were 0.14D for controls and 0.48D for keratoconus(p<0.001). Mean CCT of TRK-2P and Pentacam-HR were 560.27±42.18µm and 537.63±36µm in controls whereas, these were 489.67±45.13µm and 470.22±38.14µm in keratoconus, respectively. The mean differences in CCT data were 22.63µm for controls and 19.44µm for keratoconus(p<0.001). ICC values between two instruments for controls and keratoconus, respectively were as follows: 0.987 and 0.983 for keratometry, 0.998 and 0.994 for CCT (p<0.001). TRK-2P produces consistent result outputs in normal and pathological corneas. Also, TRK-2P is a reliable instrument when correlated with a reference high-reliable instrument. However, in terms of monitoring the progression of keratoconus, these instruments cannot be interchangeable alternatives

References

  • 1. Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42:297-319.
  • 2. Li Y, Meisler DM, Tang M, et al. Keratoconus diagnosis with optical coherence tomography pachymetry mapping. Ophthalmology. 2008;115:2159-66.
  • 3. Ciolino JB, Khachikian SS, Belin MW. Comparison of corneal thickness measurements by ultrasound and scheimpflug photography in eyes that have undergone laser in situ keratomileusis. Am J Ophthalmol. 2008;145:75-80.
  • 4. McAlinden C, Khadka J, Pesudovs K. A comprehensive evaluation of the precision (repeatability and reproducibility) of the Oculus Pentacam HR. Invest Ophthalmol Vis Sci. 2011 29;52:7731-7.
  • 6. Topcon Medical Systems. [Internet]. TRK-2P Product brochure; [Cited 2021 April 20] Available from: https://www.topcon-medical.eu/files/EU_Downloads/Products/TRK-2P/TRK-2P_brochure_en.pdf
  • 5. Reinstein DZ, Gobbe M, Archer TJ. Anterior segment biometry: a study and review of resolution and repeatability data. J Refract Surg. 2012;28:509-20.
  • 7. Ozyol E, Özyol P. Comparison of central corneal thickness with four noncontact devices: An agreement analysis of swept-source technology. Indian J Ophthalmol. 2017;65:461-5.
  • 8. Kocamis O, Kilic R. Repeatability, reproducibility and agreement of central corneal thickness measurements by two noncontact pachymetry devices. Med Hypothesis Discov Innov Ophthalmol. 2019;8:34-39.
  • 9. Nagra M, Akhtar A, Huntjens B, et al. Open versus closed view autorefraction in young adults. J Optom. 2021;14:86-91.
  • 10. Sahbaz I. assessment of interpupillary distance in the Azerbaijan society. J Craniofac Surg. 2020;31:1199-201.
  • 11. Xu Z, Peng M, Jiang J, et al. Reliability of pentacam hr thickness maps of the entire cornea in normal, post-laser in situ keratomileusis, and keratoconus eyes. Am J Ophthalmol. 2016;162:74-82.e1.
  • 12. Meyer JJ, Gokul A, Vellara HR, et al. Repeatability and agreement of orbscan ii, pentacam hr, and galilei tomography systems in corneas with keratoconus. Am J Ophthalmol. 2017;175:122-8.
  • 13. Hashemi H, Heydarian S, Ali Yekta A, et al. Agreement between Pentacam and handheld Auto-Refractor/Keratometer for keratometry measurement. J Optom. 2019;12:232-9.
  • 14. Goldich Y, Barkana Y, Avni I, et al. Goldmann applanation tonometry versus ocular response analyzer for intraocular pressure measurements in keratoconic eyes. Cornea. 2010;29:1011-5.
  • 15. Unterlauft JD, Schädle N, Kasper K, et al. Comparison of dynamic contour tonometry and Goldmann applanation tonometry in keratoconus. Cornea. 2011;30:1078-82.
  • 16. Firat PG, Orman G, Doganay S, et al. Influence of corneal parameters in keratoconus on IOP readings obtained with different tonometers. Clin Exp Optom. 2013;96:233-7.
  • 17. Nam SM, Im CY, Lee HK, et al. Accuracy of RTVue optical coherence tomography, Pentacam, and ultrasonic pachymetry for the measurement of central corneal thickness. Ophthalmology. 2010;117:2096-103.
  • 18. Chen S, Huang J, Wen D, et al. Measurement of central corneal thickness by high-resolution Scheimpflug imaging, Fourier-domain optical coherence tomography and ultrasound pachymetry. Acta Ophthalmol. 2012;90:449-55.
  • 19. Martin R. Cornea and anterior eye assessment with placido-disc keratoscopy, slit scanning evaluation topography and scheimpflug imaging tomography. Indian J Ophthalmol. 2018;66:360-6.
  • 20. Friedman DS, He M. Anterior chamber angle assessment techniques. Surv Ophthalmol. 2008;53:250-73.
  • 21. Riva I, Micheletti E, Oddone F, et al. Anterior Chamber angle assessment techniques: a review. J Clin Med. 2020;9:3814.
  • 22. Konstantopoulos A, Hossain P, Anderson DF. Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis? Br J Ophthalmol. 2007;91:551-7.
  • 23. Smith GT, Brown NA, Shun-Shin GA. Light scatter from the central human cornea. Eye (Lond). 1990;4:584-8.
  • 24. Peyrot DA, Aptel F, Crotti C, et al. Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas. J Refract Surg. 2010;26:786-95.

Normal ve Keratokonuslu Gözlerde TRK-2P Cihazının Güvenilirliğinin Değerlendirilmesi: Bir Ön Gözlem

Year 2022, Volume: 44 Issue: 6, 773 - 778, 28.11.2022
https://doi.org/10.20515/otd.1111360

Abstract

Bu çalışmanın amacı TRK-2P cihazı (Topcon Medical Systems Inc., Oakland NJ) ile elde edilen keratometri ve kornea kalınlık değerlerini, Pentacam-HR cihazı (Oculus; Optikgeräte GmbH, Wetzlar, Almanya) ile elde edilen ön kornea keratometrisi ve pakimetri değerleri ile karşılaştırmaktır. Veri tabanlarımızda her iki cihazın tam kayıtlarına sahip olan hastalar bu gözlemsel çalışmaya dahil edildi. On iki hastanın keratokonus tanılı yirmi üç gözü ve herhangi bir göz sorunu olmayan on altı hastanın otuz iki gözü çalışmaya dahil edildi (kontrol). Keratometri ve santral kornea kalınlığı (SKK) çıktıları TRK-2P ve Pentacam-HR ile elde edilmiştir. Ortalama ön kornea keratometrisi ve pakimetri verilerinin tutarlılığı, sınıf içi korelasyon katsayısı (ICC) kullanılarak ilişkilendirildi. Ortalamalar paired t-testi kullanılarak istatistiksel olarak analiz edildi (α=0.05). Ortalama keratometri TRK-2P ve Pentacam-HR kontrollerde 42.64 D±2.02 ve 42.79 D±1.95 iken keratokonusta 47.64 D±5.24 ve 47.16 D±4.65 idi. Keratometri verilerindeki ortalama farklılıklar kontroller için 0.14 D ve keratokonus için 0.48 D idi (p<0.001). TRK-2P ve Pentacam-HR ortalama SKK değerleri sırasıyla kontrollerde 560,27±42,18 µm ve 537,63±36 µm iken keratokonus hastaları için sırasıyla 489,67±45,13 µm ve 470,22±38,14 µm idi. SKK verilerindeki ortalama farklar kontroller için 22.63 µm ve keratokonus için 19.44 µm idi (p<0.001). Kontrol ve keratokonus grupları için iki cihaz arasındaki ICC değerleri sırasıyla keratometri için 0,987 ve 0,983, SKK için 0,998 ve 0.994 idi (p<0.001). Çalışmamızın sonuçları, TRK-2P, normal ve patolojik kornealarda tutarlı sonuç çıktıları üretir. Ayrıca, TRK-2P, yüksek güvenilirliğe sahip referans bir cihazla ilişkilendirildiğinde güvenilir bir araçtır. Ancak keratokonus progresyonunun izlenmesi açısından bu enstrümanlar birbirinin yerine geçebilecek alternatifler olamaz.

References

  • 1. Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42:297-319.
  • 2. Li Y, Meisler DM, Tang M, et al. Keratoconus diagnosis with optical coherence tomography pachymetry mapping. Ophthalmology. 2008;115:2159-66.
  • 3. Ciolino JB, Khachikian SS, Belin MW. Comparison of corneal thickness measurements by ultrasound and scheimpflug photography in eyes that have undergone laser in situ keratomileusis. Am J Ophthalmol. 2008;145:75-80.
  • 4. McAlinden C, Khadka J, Pesudovs K. A comprehensive evaluation of the precision (repeatability and reproducibility) of the Oculus Pentacam HR. Invest Ophthalmol Vis Sci. 2011 29;52:7731-7.
  • 6. Topcon Medical Systems. [Internet]. TRK-2P Product brochure; [Cited 2021 April 20] Available from: https://www.topcon-medical.eu/files/EU_Downloads/Products/TRK-2P/TRK-2P_brochure_en.pdf
  • 5. Reinstein DZ, Gobbe M, Archer TJ. Anterior segment biometry: a study and review of resolution and repeatability data. J Refract Surg. 2012;28:509-20.
  • 7. Ozyol E, Özyol P. Comparison of central corneal thickness with four noncontact devices: An agreement analysis of swept-source technology. Indian J Ophthalmol. 2017;65:461-5.
  • 8. Kocamis O, Kilic R. Repeatability, reproducibility and agreement of central corneal thickness measurements by two noncontact pachymetry devices. Med Hypothesis Discov Innov Ophthalmol. 2019;8:34-39.
  • 9. Nagra M, Akhtar A, Huntjens B, et al. Open versus closed view autorefraction in young adults. J Optom. 2021;14:86-91.
  • 10. Sahbaz I. assessment of interpupillary distance in the Azerbaijan society. J Craniofac Surg. 2020;31:1199-201.
  • 11. Xu Z, Peng M, Jiang J, et al. Reliability of pentacam hr thickness maps of the entire cornea in normal, post-laser in situ keratomileusis, and keratoconus eyes. Am J Ophthalmol. 2016;162:74-82.e1.
  • 12. Meyer JJ, Gokul A, Vellara HR, et al. Repeatability and agreement of orbscan ii, pentacam hr, and galilei tomography systems in corneas with keratoconus. Am J Ophthalmol. 2017;175:122-8.
  • 13. Hashemi H, Heydarian S, Ali Yekta A, et al. Agreement between Pentacam and handheld Auto-Refractor/Keratometer for keratometry measurement. J Optom. 2019;12:232-9.
  • 14. Goldich Y, Barkana Y, Avni I, et al. Goldmann applanation tonometry versus ocular response analyzer for intraocular pressure measurements in keratoconic eyes. Cornea. 2010;29:1011-5.
  • 15. Unterlauft JD, Schädle N, Kasper K, et al. Comparison of dynamic contour tonometry and Goldmann applanation tonometry in keratoconus. Cornea. 2011;30:1078-82.
  • 16. Firat PG, Orman G, Doganay S, et al. Influence of corneal parameters in keratoconus on IOP readings obtained with different tonometers. Clin Exp Optom. 2013;96:233-7.
  • 17. Nam SM, Im CY, Lee HK, et al. Accuracy of RTVue optical coherence tomography, Pentacam, and ultrasonic pachymetry for the measurement of central corneal thickness. Ophthalmology. 2010;117:2096-103.
  • 18. Chen S, Huang J, Wen D, et al. Measurement of central corneal thickness by high-resolution Scheimpflug imaging, Fourier-domain optical coherence tomography and ultrasound pachymetry. Acta Ophthalmol. 2012;90:449-55.
  • 19. Martin R. Cornea and anterior eye assessment with placido-disc keratoscopy, slit scanning evaluation topography and scheimpflug imaging tomography. Indian J Ophthalmol. 2018;66:360-6.
  • 20. Friedman DS, He M. Anterior chamber angle assessment techniques. Surv Ophthalmol. 2008;53:250-73.
  • 21. Riva I, Micheletti E, Oddone F, et al. Anterior Chamber angle assessment techniques: a review. J Clin Med. 2020;9:3814.
  • 22. Konstantopoulos A, Hossain P, Anderson DF. Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis? Br J Ophthalmol. 2007;91:551-7.
  • 23. Smith GT, Brown NA, Shun-Shin GA. Light scatter from the central human cornea. Eye (Lond). 1990;4:584-8.
  • 24. Peyrot DA, Aptel F, Crotti C, et al. Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas. J Refract Surg. 2010;26:786-95.
There are 24 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section ORİJİNAL MAKALE
Authors

Feride Tuncer Orhan 0000-0002-1485-7289

Eray Atalay 0000-0002-2536-4279

Nilgün Yıldırım 0000-0001-6266-4951

Publication Date November 28, 2022
Published in Issue Year 2022 Volume: 44 Issue: 6

Cite

Vancouver Tuncer Orhan F, Atalay E, Yıldırım N. Evaluation of the TRK-2P Instrument Reliability in Normal and Keratoconus Eyes: A Preliminary Observation. Osmangazi Tıp Dergisi. 2022;44(6):773-8.


13299        13308       13306       13305    13307  1330126978