Araştırma Makalesi
BibTex RIS Kaynak Göster

Postkontrast T1 Agırlıklı Görüntülerde Meningeal Kontrastlanmanın Derin Öğrenme Yöntemi İle Segment

Yıl 2025, Cilt: 47 Sayı: 4, 600 - 605, 18.06.2025

Öz

Çalışmamızın amacı; postkontrast T1 ağırlıklı görüntülerde meningeal kontrastlanmanın derin öğrenme yöntemi ile segmentasyonunun başarısını değerlendirmektir. Retrospektif olarak 2013-2020 yılları arasında meningeal kontrastlanması olan 83 hastanın postkontrast T1 ağırlıklı sekanslarından elde edilen 313 kesit çalışmaya dahil edildi. Veri seti train – validation- test grubu olarak ayrıldı. Pytorch Unet ile 300 epoch eğitim yapıldı, en iyi model kaydedildi. Birleşim Üzerinde Kesişim (The Intersection over Union, IoU, Jaccard Endeksi) istatistiğinin eşik değeri olarak %50 seçilerek sonuçlar hesaplandı. Toplamda 83 hastanın görüntüleri değerlendirilmiş olup bu hastalardan 36 (%43.4)’sı kadın, 47 (%56.6)’si erkek hasta idi. Hastaların yaş ortalaması ± standart sapması 57.06 ±16.73 idi. 83 hastanın görüntüsünden elde edilen 313 kesitte; 251 kesit eğitime, 31 kesit validasyona, 31 kesitteki etiketler test aşamasına ayrıldı. Test grubunda Doğru Bulunan: 35, Yanlış Bulunan: 12, Bulunamayan: 12 olarak tespit edildi. Çalışmamızda Precision, Sensitivity, F1 Score değerleri sırasıyla %74, %74, %74 olarak hesaplandı. Çalışmamız derin öğrenme temelli U-net mimarisi kullanarak meningeal kontrastlanma alanlarının segmentasyonunda literatürde öncü çalışmalardan biri olup bu alanda yapılacak yeni çalışmalara ihtiyaç vardır.

Kaynakça

  • 1. Smirniotopoulos J.G., Murphy F. M., Rushing E.J., Rees J. H., Schroeder J.W. Patterns of Contrast Enhancement in the Brain and Meninges. AFIP Archives - From the Archives of the AFIP. RadioGraphics 2007; 27:525–551.
  • 2. Meltzer CC, Fukui MB, Kanal E, Smirniotopoulos JG. MR imaging of the meninges. I. Normal anatomic features and nonneoplastic disease. Radiology 1996;201:297–308.
  • 3. Kilgore D, Breger R, Daniels D, Pojunas K, Williams A, Haughton V. Cranial tissues: normal MR appearance after intravenous injection of Gd-DTPA. Radiology 1986;160:757-761.
  • 4. Sze G, Soletsky S, Bronen R, Krol G. MR imaging of the cranial meninges with emphasis on contrast enhancement and meningeal carcinomatosis. AJR Am J Roentgenol 1989;153(5):1039-49.
  • 5. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436.
  • 6. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M,et al. A survey on deep learning in medical image analysis. Med ImageAnal 2017;42:60–88.
  • 7. Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 2019;29(2):102–27.
  • 8. Tan PN, Steinbach M, Kumar V (2005), Introduction to Data Mining. ISBN 0-321- 32136-7.17. Ghonge NP, Chowdhury V. Minimum-intensity projection images in high-resolution computed tomography lung: Technology update. Lung India. 2018 Sep-Oct;35(5):439-440.
  • 9. G. Praveen, A. Agrawal, Multi stage classification and segmentation of brain tumor, in: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), IEEE, 2016, pp. 1628–1632.
  • 10. B.N. Saha, N. Ray, R. Greiner, A. Murtha, H. Zhang, Quick detection of brain tumors and edemas: A bounding box method using symmetry, Comput. Med. Imaging Graph. 36 (2) (2012) 95–107.
  • 11. L. Dipietro, A. M. Sabatini, and P. Dario, “A survey of glovebased systems and their applications,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 38, no. 4, pp. 461–482, Jul. 2008,
  • 12. Chamberlain MC, SandyAD, PressGA. Leptomeningeal metastasis: a comparison of gadolinium enhanced MR and contrast-enhanced CT of the brain. Neurology. 1990;40:4358.
  • 13. Freilich RJ, Krol G, DeAngelis LM. Neuroimaging and cerebrospinal fluid cytology in the diagnosis of leptomeningeal metastasis. Ann Neurol. 1995; 38:517.
  • 14. WasserstromWR,GlassJP,PosnerJB.Diagnosisandtreatmentofleptomeningeal metastasesfrom solid tumors: experience with 90 patients. Cancer. 1982; 49:759 72
  • 15. Meltzer CC, Fukui MB, Kanal E, Smirniotopou los JG. MR imaging of the meninges. I. Normal anatomic features and nonneoplastic disease. Ra diology 1996;201:297–308.
  • 16. Laukamp KR, Thiele F, Shakirin G, Zopfs D, Faymonville A, Timmer M, Maintz D, Perkuhn M, Borggrefe J. Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI. Eur Radiol. 2019 Jan;29(1):124-132
  • 17. Jun Y, Park YW, Shin H, Shin Y, Lee JR, Han K, Ahn SS, Lim SM, Hwang D, Lee SK. Intelligent noninvasive meningioma grading with a fully automatic segmentation using interpretable multiparametric deep learning. Eur Radiol. 2023;33(9):6124-6133
  • 18. Yang L, Wang T, Zhang J, Kang S, Xu S, Wang K. Deep learning-based automatic segmentation of meningioma from T1-weighted contrast-enhanced MRI for preoperative meningioma differentiation using radiomic features. BMC Med Imaging. 2024; 5;24(1):56.

Segmentation of Meningeal Contrast Enhancement in Post-Contrast T1-Weighted Images Using the Deep Learning Method

Yıl 2025, Cilt: 47 Sayı: 4, 600 - 605, 18.06.2025

Öz

To evaluate the success of segmentation of meningeal contrast enhancement on post-contrast T1-weighted images using the deep learning method. The study retrospectively included 313 sections obtained from post-contrast T1-weighted sequences of 83 patients with meningeal enhancement. The dataset was divided into three groups. A total of 300 epochs of training were performed using PyTorch U-Net, and the best model was identified. The results were calculated by selecting 50% as the threshold for the intersection over union statistics. In total, images of 83 patients were evaluated, of whom 36 (43.4%) were female and 47 (56.6%) were male. The mean ± standard deviation of the patients’ age was 57.06 ± 16.73 years. Of the 313 sections obtained, 251 were allocated in the training group, 31 to the validation group, and 31 to the test group. The results of the test group were as follows: 35 true positives, 12 false positives, and 12 false negatives. The precision, sensitivity, and F1 score values were all calculated to be 74%. This is one of the pioneering studies in the literature on the segmentation of meningeal contrast-enhanced areas using the deep learning-based U-net architecture. Further studies are needed in this area

Kaynakça

  • 1. Smirniotopoulos J.G., Murphy F. M., Rushing E.J., Rees J. H., Schroeder J.W. Patterns of Contrast Enhancement in the Brain and Meninges. AFIP Archives - From the Archives of the AFIP. RadioGraphics 2007; 27:525–551.
  • 2. Meltzer CC, Fukui MB, Kanal E, Smirniotopoulos JG. MR imaging of the meninges. I. Normal anatomic features and nonneoplastic disease. Radiology 1996;201:297–308.
  • 3. Kilgore D, Breger R, Daniels D, Pojunas K, Williams A, Haughton V. Cranial tissues: normal MR appearance after intravenous injection of Gd-DTPA. Radiology 1986;160:757-761.
  • 4. Sze G, Soletsky S, Bronen R, Krol G. MR imaging of the cranial meninges with emphasis on contrast enhancement and meningeal carcinomatosis. AJR Am J Roentgenol 1989;153(5):1039-49.
  • 5. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436.
  • 6. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M,et al. A survey on deep learning in medical image analysis. Med ImageAnal 2017;42:60–88.
  • 7. Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 2019;29(2):102–27.
  • 8. Tan PN, Steinbach M, Kumar V (2005), Introduction to Data Mining. ISBN 0-321- 32136-7.17. Ghonge NP, Chowdhury V. Minimum-intensity projection images in high-resolution computed tomography lung: Technology update. Lung India. 2018 Sep-Oct;35(5):439-440.
  • 9. G. Praveen, A. Agrawal, Multi stage classification and segmentation of brain tumor, in: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), IEEE, 2016, pp. 1628–1632.
  • 10. B.N. Saha, N. Ray, R. Greiner, A. Murtha, H. Zhang, Quick detection of brain tumors and edemas: A bounding box method using symmetry, Comput. Med. Imaging Graph. 36 (2) (2012) 95–107.
  • 11. L. Dipietro, A. M. Sabatini, and P. Dario, “A survey of glovebased systems and their applications,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 38, no. 4, pp. 461–482, Jul. 2008,
  • 12. Chamberlain MC, SandyAD, PressGA. Leptomeningeal metastasis: a comparison of gadolinium enhanced MR and contrast-enhanced CT of the brain. Neurology. 1990;40:4358.
  • 13. Freilich RJ, Krol G, DeAngelis LM. Neuroimaging and cerebrospinal fluid cytology in the diagnosis of leptomeningeal metastasis. Ann Neurol. 1995; 38:517.
  • 14. WasserstromWR,GlassJP,PosnerJB.Diagnosisandtreatmentofleptomeningeal metastasesfrom solid tumors: experience with 90 patients. Cancer. 1982; 49:759 72
  • 15. Meltzer CC, Fukui MB, Kanal E, Smirniotopou los JG. MR imaging of the meninges. I. Normal anatomic features and nonneoplastic disease. Ra diology 1996;201:297–308.
  • 16. Laukamp KR, Thiele F, Shakirin G, Zopfs D, Faymonville A, Timmer M, Maintz D, Perkuhn M, Borggrefe J. Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI. Eur Radiol. 2019 Jan;29(1):124-132
  • 17. Jun Y, Park YW, Shin H, Shin Y, Lee JR, Han K, Ahn SS, Lim SM, Hwang D, Lee SK. Intelligent noninvasive meningioma grading with a fully automatic segmentation using interpretable multiparametric deep learning. Eur Radiol. 2023;33(9):6124-6133
  • 18. Yang L, Wang T, Zhang J, Kang S, Xu S, Wang K. Deep learning-based automatic segmentation of meningioma from T1-weighted contrast-enhanced MRI for preoperative meningioma differentiation using radiomic features. BMC Med Imaging. 2024; 5;24(1):56.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Radyoloji ve Organ Görüntüleme
Bölüm ORİJİNAL MAKALELER / ORIGINAL ARTICLES
Yazarlar

Nevin Aydın 0000-0002-7765-4323

Suzan Şaylısoy 0000-0002-1560-964X

Uğur Toprak 0000-0002-1244-2485

Burcu Mert 0000-0001-7592-3078

Özer Çelik 0000-0002-4409-3101

Yayımlanma Tarihi 18 Haziran 2025
Gönderilme Tarihi 19 Şubat 2025
Kabul Tarihi 20 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 47 Sayı: 4

Kaynak Göster

Vancouver Aydın N, Şaylısoy S, Toprak U, Mert B, Çelik Ö. Segmentation of Meningeal Contrast Enhancement in Post-Contrast T1-Weighted Images Using the Deep Learning Method. Osmangazi Tıp Dergisi. 2025;47(4):600-5.


13299        13308       13306       13305    13307  1330126978