Review
BibTex RIS Cite

Sağlık Araştırmalarında Matematik Model Kullanımı

Year 2020, Volume: 5 Issue: 3, 528 - 540, 30.09.2020
https://doi.org/10.26453/otjhs.773674

Abstract

Sağlık araştırmalarında matematik modellerin uygulanması yeni olmamakla beraber son yıllarda oldukça yaygınlaşmıştır. Bu artışın nedeni olarak veriyle hesaplama gücündeki artış kadar sağlık maliyetlerinin artması, kaynakların azalması bununla beraber artan yaşam süresi nedeniyle rastlanan kompleks sağlık sorunları da gösterilebilir. Bu çalışma, matematik modellerin sağlık alanındaki uygulamalarını incelemeyi amaçlamakta olup özellikle klinik uygulamaları ve hastalık modellerine önem vermiştir. Bulaşıcı hastalıklar ve kronik hastalıkların modellenmesi bunlara bağlı olarak tedavi ve korunma yöntemlerinin arasından en etkin ve maliyet etkili olanların belirlenmesi önemli bir alandır. Kızamık, grip, kanser ve HIV gibi birçok hastalık ve halk sağlığı sorunu matematik modeller yardımıyla incelenip var olan kaynakların etkin kullanımını sağlayacak karar destek çalışmaları mevcuttur. Bu çalışmada, bu çalışmaların geniş bir özeti kullanılan matematik modelleme yöntemlerinin sınıflandırılmasıyla verilmiştir. Hastalık model yöntemleri olarak Markov modeller, kompartıman modelleri ve ajan temelli benzetim modelleri metot olarak özetlenmiş ve yapılan önemli çalışmalardan bazıları ve Türkiye’de yapılan uygulamalar incelenmiştir.

Supporting Institution

Destekleyen Kurum bulunmamaktadır.

References

  • 1. Denton B, Verter V. Health care O.R. OR MS Today. 2010. http://www.lionhrtpub.com/ab/wpgen.shtml. Accessed March 9, 2020.
  • 2. Türkiye Odalar ve Borsalar Birliği. Türkiye Sağlık Sektörüne Genel Bakış.; 2017. https://www.tobb.org.tr/saglik/20171229-tss-genel-bakis-tr.pdf. Accessed March 9, 2020.
  • 3. Fries BE. Bibliography of Operations Research in Health-Care Systems. Oper Res. 1976;24(5):801-814. doi:10.1287/opre.24.5.801
  • 4. Pierskalla WP, Brailer DJ. Applications of operations research in health care delivery. Handbooks Oper Res Manag Sci. 1994;6(C):469-505. doi:10.1016/S0927-0507(05)80094-5
  • 5. Brandeau, Margaret L., Sainfort, Francois, Pierskalla WP. Operations Research and Health Care: A Handbook of Methods and Applications.; 2004. doi:10.1057/jos.2009.8
  • 6. Rais A, Vianaa A. Operations research in healthcare: A survey. Int Trans Oper Res. 2011;18(1):1-31. doi:10.1111/j.1475-3995.2010.00767.x
  • 7. Fakhimi M, Probert J. Operations research within UK healthcare: A review. J Enterp Inf Manag. 2013;26(1):21-49. doi:10.1108/17410391311289532
  • 8. Caro JJ, Briggs AH, Siebert U, Kuntz KM. Modeling good research practices-overview: A report of the ISPOR-SMDM modeling good research practices task force-1. Med Decis Mak. 2012;32(5):667-677. doi:10.1177/0272989X12454577
  • 9. Eddy DM, Hollingworth W, Caro JJ, Tsevat J, McDonald KM, Wong JB. Model transparency and validation: A report of the ISPOR-SMDM modeling good research practices task force-7. Med Decis Mak. 2012;32(5):733-743. doi:10.1177/0272989X12454579
  • 10. Briggs AH, Weinstein MC, Fenwick EAL, Karnon J, Sculpher MJ, Paltiel AD. Model parameter estimation and uncertainty analysis: A report of the ISPOR-SMDM modeling good research practices task force working group-6. Med Decis Mak. 2012;32(5):722-732. doi:10.1177/0272989X12458348
  • 11. Roberts M, Russell LB, Paltiel AD, Chambers M, McEwan P, Krahn M. Conceptualizing a model: A report of the ISPOR-SMDM modeling good research practices task force-2. Med Decis Mak. 2012;32(5):678-689. doi:10.1177/0272989X12454941
  • 12. Karnon J, Stahl J, Brennan A, Caro JJ, Mar J, Möller J. Modeling using discrete event simulation: A report of the ISPOR-SMDM modeling good research practices task force-4. Med Decis Mak. 2012;32(5):701-711. doi:10.1177/0272989X12455462
  • 13. Siebert U, Alagoz O, Bayoumi AM, et al. State-transition modeling: A report of the ISPOR-SMDM modeling good research practices task force-3. Med Decis Mak. 2012;32(5):690-700. doi:10.1177/0272989X12455463
  • 14. Simpson KN, Strassburger A, Jones WJ, Dietz B, Rajagopalan R. Comparison of Markov model and discrete-event simulation techniques for HIV. Pharmacoeconomics. 2009;27(2):159-165. doi:10.2165/00019053-200927020-00006
  • 15. Meltzer MI, Damon I, Leduc JW, Donald Millar J. Modeling Potential Responses to Smallpox as a Bioterrorist Weapon. Vol 7. http://www.cdc.gov/ncidod/eid/vol7no6/. Accessed March 9, 2020.
  • 16. Myers ER, McCrory DC, Nanda K, Bastian L, Matchar DB. Mathematical model for the natural history of human papillomavirus infection and cervical carcinogenesis. Am J Epidemiol. 2000;151(12):1158-1171. doi:10.1093/oxfordjournals.aje.a010166
  • 17. Chhatwal J, Kanwal F, Roberts MS, Dunn MA. Cost-effectiveness and budget impact of hepatitis C virus treatment with sofosbuvir and ledipasvir in the United States. Ann Intern Med. 2015;162(6):397-406.
  • 18. Yaylali E, Ivy JS, Taheri J. Systems engineering methods for enhancing the value stream in public health preparedness: The role of Markov models, simulation, and optimization. Public Health Rep. 2014;129. doi:10.1177/00333549141296S419
  • 19. Sanders GD, Bayoumi AM, Sundaram V, et al. Cost-effectiveness of screening for HIV in the era of highly active antiretroviral therapy. N Engl J Med. 2005;352(6):570-585.
  • 20. Shadick NA, Liang MH, Phillips CB, Fossel K, Kuntz KM. The cost-effectiveness of vaccination against Lyme disease. Arch Intern Med. 2001;161(4):554-561. doi:10.1001/archinte.161.4.554
  • 21. Requena-Méndez A, Bussion S, Aldasoro E, et al. Cost-effectiveness of Chagas disease screening in Latin American migrants at primary health-care centres in Europe: a Markov model analysis. Lancet Glob Heal. 2017;5(4):e439-e447. doi:10.1016/S2214-109X(17)30073-6
  • 22. Yaesoubi R, Cohen T. Generalized Markov models of infectious disease spread: A novel framework for developing dynamic health policies. Eur J Oper Res. 2011;215(3):679-687. doi:10.1016/j.ejor.2011.07.016
  • 23. Maillart LM, Ivy JS, Ransom S, Diehl K. Assessing dynamic breast cancer screening policies. Oper Res. 2008;56(6):1411-1427. doi:10.1287/opre.1080.0614
  • 24. Zhang J, Denton BT, Balasubramanian H, et al. Optimization of PSA-Based Screening Decisions for Prostate Cancer Detection Preventive Follow-up Policies for Cardiovascular Diseases View Project Treatment Planning-Modeling View Project Optimization of PSA-Based Screening Decisions for Prostate Cancer D.; 2009. https://www.researchgate.net/publication/228589623. Accessed March 25, 2020.
  • 25. Denton BT, Kurt M, Shah ND, Bryant SC, Smith SA. Optimizing the start time of statin therapy for patients with diabetes. Med Decis Mak. 2009;29(3):351-367. doi:10.1177/0272989X08329462
  • 26. Kurt M, Denton BT, Schaefer AJ, Shah ND, Smith SA. Type 2 diabetes. IIE Trans Healthc Syst Eng. 2011;1(1):49-65. doi:10.1080/19488300.2010.550180
  • 27. Mason JE, England DA, Denton BT, Smith SA, Kurt M, Shah ND. Optimizing statin treatment decisions for diabetes patients in the presence of uncertain future adherence. Med Decis Mak. 2012;32(1):154-166. doi:10.1177/0272989X11404076
  • 28. Klebanoff MJ, Corey KE, Samur S, et al. Cost-effectiveness Analysis of Bariatric Surgery for Patients With Nonalcoholic Steatohepatitis Cirrhosis. JAMA Netw open. 2019;2(2):e190047. doi:10.1001/jamanetworkopen.2019.0047
  • 29. Steimle LN, Denton BT. Markov decision processes for screening and treatment of chronic diseases. In: International Series in Operations Research and Management Science. Vol 248. Springer New York LLC; 2017:189-222. doi:10.1007/978-3-319-47766-4_6
  • 30. Briggs A, Sculpher M. An introduction to Markov modelling for economic evaluation. Pharmacoeconomics. 1998;13(4):397-409. doi:10.2165/00019053-199813040-00003
  • 31. Faissol DM, Griffin PM, Swann JL. Bias in Markov models of disease. Math Biosci. 2009;220(2):143-156. doi:10.1016/j.mbs.2009.05.005
  • 32. Kirsch F. Economic Evaluations of Multicomponent Disease Management Programs with Markov Models: A Systematic Review. Value Heal. 2016;19(8):1039-1054. doi:10.1016/j.jval.2016.07.004
  • 33. WO Kermack AM. A contribution to the mathematical theory of epidemics. Proc R Soc London Ser A, Contain Pap a Math Phys Character. 1927;115(772):700-721. doi:10.1098/rspa.1927.0118
  • 34. Hethcote HW. Mathematics of infectious diseases. SIAM Rev. 2000;42(4):599-653. doi:10.1137/S0036144500371907
  • 35. Lindsay SW, Hole DG, Hutchinson RA, Richards SA, Willis SG. Assessing the future threat from vivax malaria in the United Kingdom using two markedly different modelling approaches. Malar J. 2010;9(1):70.
  • 36. McLean AR, Anderson RM. Measles in developing countries. Part II. The predicted impact of mass vaccination. Epidemiol Infect. 1988;100(3):419-442. doi:10.1017/S0950268800067170
  • 37. Ferrari MJ, Grais RF, Bharti N, et al. The dynamics of measles in sub-Saharan Africa. Nature. 2008;451(7179):679-684. doi:10.1038/nature06509
  • 38. Zhou L, Wang Y, Xiao Y, Li MY. Global dynamics of a discrete age-structured SIR epidemic model with applications to measles vaccination strategies. Math Biosci. 2019;308:27-37. doi:10.1016/j.mbs.2018.12.003
  • 39. Thakkar N, Gilani SSA, Hasan Q, McCarthy KA. Decreasing measles burden by optimizing campaign timing. Proc Natl Acad Sci U S A. 2019;166(22):11069-11073. doi:10.1073/pnas.1818433116
  • 40. Metcalf CJE, Lessler J, Klepac P, Morice A, Grenfell BT, Bjørnstad ON. Structured models of infectious disease: Inference with discrete data. Theor Popul Biol. 2012;82(4):275-282. doi:10.1016/j.tpb.2011.12.001
  • 41. Pandey A, Atkins KE, Medlock J, et al. Strategies for containing Ebola in West Africa. Science. 2014;346(6212):991-995. doi:10.1126/science.1260612
  • 42. Dye C, Williams BG. The population dynamics and control of tuberculosis. Science. 2010;328(5980):856-861. doi:10.1126/science.1185449
  • 43. Chan CH, McCabe CJ, Fisman DN. Core groups, antimicrobial resistance and rebound in gonorrhoea in North America. Sex Transm Infect. 2012;88(3):200-204. doi:10.1136/sextrans-2011-050049
  • 44. Khurana N, Yaylali E, Farnham PG, et al. Impact of Improved HIV Care and Treatment on PrEP Effectiveness in the United States, 2016–2020. JAIDS J Acquir Immune Defic Syndr. 2018;78(4):399-405.
  • 45. Lipsitch M, Cohen T, Cooper B, et al. Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003;300(5627):1966-1970. doi:10.1126/science.1086616
  • 46. Chowell G, Blumberg S, Simonsen L, Miller MA, Viboud C. Synthesizing data and models for the spread of MERS-CoV, 2013: Key role of index cases and hospital transmission. Epidemics. 2014;9:40-51. doi:10.1016/j.epidem.2014.09.011
  • 47. Coburn BJ, Wagner BG, Blower S. Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1). BMC Med. 2009;7(1):30.
  • 48. Bajardi P, Poletto C, Ramasco JJ, Tizzoni M, Colizza V, Vespignani A. Human Mobility Networks, Travel Restrictions, and the Global Spread of 2009 H1N1 Pandemic. Perc M, ed. PLoS One. 2011;6(1):e16591. doi:10.1371/journal.pone.0016591
  • 49. Khazeni N. Effectiveness and Cost-Effectiveness of Vaccination Against Pandemic Influenza (H1N1) 2009. Ann Intern Med. 2009;151(12):829. doi:10.7326/0000605-200912150-00157
  • 50. Fraser C, Donnelly CA, Cauchemez S, et al. Pandemic potential of a strain of influenza A (H1N1): Early findings. Science. 2009;324(5934):1557-1561. doi:10.1126/science.1176062
  • 51. Hethcote HW. An age-structured model for pertussis transmission. Math Biosci. 1997;145(2):89-136. doi:10.1016/S0025-5564(97)00014-X
  • 52. Keeling MJ, Rohani P. Modeling Infectious Diseases in Humans and Animals. Princeton University Press; 2011. doi:10.1016/s1473-3099(08)70147-6
  • 53. Long EF, Brandeau ML, Owens DK. The cost-effectiveness and population outcomes of expanded HIV screening and antiretroviral treatment in the united states. Ann Intern Med. 2010;153(12):778-789. doi:10.7326/0003-4819-153-12-201012210-00004
  • 54. Long EF, Brandeau ML, Owens DK. Potential population health outcomes and expenditures of HIV vaccination strategies in the United States. Vaccine. 2009;27(39):5402-5410. doi:10.1016/j.vaccine.2009.06.063
  • 55. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020;395(10225):689-697. doi:10.1016/S0140-6736(20)30260-9
  • 56. Maier BF, Brockmann D. Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science. 2020;368(6492):742-746. doi:10.1126/science.abb4557
  • 57. Prem K, Liu Y, Russell TW, et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Heal. 2020;5(5):e261-e270. doi:10.1016/S2468-2667(20)30073-6
  • 58. Li Y, Lawley MA, Siscovick DS, Zhang D, Pagán JA. Agent-based modeling of chronic diseases: A narrative review and future research directions. Prev Chronic Dis. 2016;13(5). doi:10.5888/pcd13.150561
  • 59. Farnham PG, Gopalappa C, Sansom SL, et al. Updates of lifetime costs of care and quality-of-life estimates for HIV-infected persons in the United States: late versus early diagnosis and entry into care. JAIDS J Acquir Immune Defic Syndr. 2013;64(2):183-189.
  • 60. Gopalappa C, Farnham PG, Chen YH, Sansom SL. Progression and Transmission of HIV/AIDS (PATH 2.0): A New, Agent-ased Model to Estimate HIV Transmissions in the United States. Med Decis Mak. 2016;37(2):224-233. doi:10.1177/0272989X16668509
  • 61. Lee BY, Brown ST, Cooley P, et al. Vaccination deep into a pandemic wave: Potential mechanisms for a “third wave” and the impact of vaccination. Am J Prev Med. 2010;39(5):e21-e29. doi:10.1016/j.amepre.2010.07.014
  • 62. Lee BY, Brown ST, Cooley P, et al. Simulating school closure strategies to titigate an influenza epidemic. J Public Heal Manag Pract. 2010;16(3):252-261. doi:10.1097/PHH.0b013e3181ce594e
  • 63. Grefenstette JJ, Brown ST, Rosenfeld R, et al. FRED (A Framework for Reconstructing Epidemic Dynamics): An open-source software system for modeling infectious diseases and control strategies using census-based populations. BMC Public Health. 2013;13(1):940. doi:10.1186/1471-2458-13-940
  • 64. Merler S, Ajelli M, Fumanelli L, et al. Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: A computational modelling analysis. Lancet Infect Dis. 2015;15(2):204-211. doi:10.1016/S1473-3099(14)71074-6
  • 65. Olsen J, Jepsen MR. Human papillomavirus transmission and cost-effectiveness of introducing quadrivalent HPV vaccination in Denmark. Int J Technol Assess Health Care. 2010;26(2):183-191. doi:10.1017/S0266462310000085
  • 66. Day TE, Ravi N, Xian H, Brugh A. An Agent-Based Modeling Template for a Cohort of Veterans with Diabetic Retinopathy. Chaum E, ed. PLoS One. 2013;8(6):e66812. doi:10.1371/journal.pone.0066812
  • 67. Li Y, Kong N, Lawley M, Weiss L, Pagán JA. Advancing the use of evidence-based decision-making in local health departments with systems science methodologies. Am J Public Health. 2015;105 Suppl 2(S2):S217-22. doi:10.2105/AJPH.2014.302077
  • 68. Hammond RA, Ornstein JT. A model of social influence on body mass index. Ann N Y Acad Sci. 2014;1331(1):34-42. doi:10.1111/nyas.12344
  • 69. Nianogo RA, Arah OA. Agent-based modeling of noncommunicable diseases: A systematic review. Am J Public Health. 2015;105(3):e20-e31. doi:10.2105/AJPH.2014.302426
  • 70. Sayan M, Hınçal E, Şanlıdağ T, Kaymakamzade B, Sa’ad FT, Baba IA. Dynamics of HIV/AIDS in Turkey from 1985 to 2016. Qual Quant. 2018;52(1):711-723. doi:10.1007/s11135-017-0648-7
  • 71. Kaymakamzade B, Şanlıdağ T, Hınçal E, Sayan M, Sa’ad FT, Baba IA. Role of awareness in controlling HIV/AIDS: a mathematical model. Qual Quant. 2018;52(1):625-637. doi:10.1007/s11135-017-0640-2
  • 72. Örmeci N, Malhan S, Balık İ, Ergör G, Razavi H, Robbins S. Scenarios to manage the hepatitis C disease burden and associated economic impact of treatment in Turkey. Hepatol Int. 2017;11(6):509-516.
  • 73. Yaylali E, Ozdemir B, Lacin N, Ceyil S. Modelling Hepatitis C Infections Among People Who Inject Drugs in Turkey: Is HCV Elimination Possible? In: Calisir F, Korhan O, eds. Industrial Engineering in the Digital Disruption Era: Selected Papers from the Global Joint Conference on Industrial Engineering and Its Application Areas, GJCIE 2019. Springer, Cham; 2020:360-374. doi:10.1007/978-3-030-42416-9_32
  • 74. Koyuncu M, Erol R. Optimal resource allocation model to mitigate the impact of pandemic influenza: A case study for Turkey. J Med Syst. 2010;34(1):61-70. doi:10.1007/s10916-008-9216-y
  • 75. Wolfson LJ, Daniels VJ, Pillsbury M, et al. Cost-effectiveness analysis of universal varicella vaccination in Turkey using a dynamic transmission model. PLoS One. 2019;14(8):e0220921. doi:10.1371/journal.pone.0220921
  • 76. Bakir M, Türel Ö, Topachevskyi O. Cost-effectiveness of new pneumococcal conjugate vaccines in Turkey: A decision analytical model. BMC Health Serv Res. 2012;12(1). doi:10.1186/1472-6963-12-386
  • 77. Marijam A, Olbrecht J, Ozakay A, Eken V, Meszaros K. Cost-Effectiveness Comparison of Pneumococcal Conjugate Vaccines in Turkish Children. Value Heal Reg Issues. 2019;19:34-44. doi:10.1016/j.vhri.2018.11.007
  • 78. Ozmen V, Cakar B, Gokmen E, et al. Cost effectiveness of Gene Expression Profiling in Patients with Early-Stage Breast Cancer in a Middle-Income Country, Turkey: Results of a Prospective Multicenter Study. Eur J Breast Heal. 2019;15(3):183-190. doi:10.5152/ejbh.2019.4761
  • 79. Balçik PY, Şahin B. Cost-effectiveness analysis of pemetrexed and gemcitabine treatment for advanced nonsmall cell lung cancer in turkey. Turkish J Med Sci. 2016;46(1):152-158. doi:10.3906/sag-1408-4
  • 80. Sözmen K, Unal B, Capewell S, Critchley J, O’Flaherty M. Estimating diabetes prevalence in Turkey in 2025 with and without possible interventions to reduce obesity and smoking prevalence, using a modelling approach. Int J Public Health. 2014;60(1):13-21. doi:10.1007/s00038-014-0622-2
  • 81. Islek D, Sozmen K, Unal B, et al. Estimating the potential contribution of stroke treatments and preventative policies to reduce the stroke and ischemic heart disease mortality in Turkey up to 2032: a modelling study. BMC Public Health. 2016;16(1):46. doi:10.1186/s12889-015-2655-8
  • 82. Kretzschmar M, Wallinga J. Mathematical Models in Infectious Disease Epidemiology. In: Krämer A, Kretzschmar M, Krickeberg K, eds. Modern Infectious Disease Epidemiology. New York, NY: Springer; 2009:209-221. doi:10.1007/978-0-387-93835-6_12

Mathematical Models in Healthcare

Year 2020, Volume: 5 Issue: 3, 528 - 540, 30.09.2020
https://doi.org/10.26453/otjhs.773674

Abstract

In the recent years, healthcare applications of mathematical models have been increasingly developed although the field of healthcare models is not a new area. Current trends could be explained with growing rate of data and computing skills, rising healthcare costs, decreasing resources as well as more complex health problems due to extended life expectancy. In this paper, we survey the mathematical models applied to healthcare problems with a focus on disease applications. Infectious and chronic disease modelling which has been studied for several diseases such as measles, influenza is an important research area. Furthermore, effectiveness and cost-effectiveness of prevention, screening and treatment interventions could be assessed with the help of these models. In this study, we present the definition of mathematical modeling, advantages and disadvantages of modelling and introduce an extensive summary of published literature. We mainly focus on three modeling methodology: Markov models, compartmental models and agent-based simulation.

References

  • 1. Denton B, Verter V. Health care O.R. OR MS Today. 2010. http://www.lionhrtpub.com/ab/wpgen.shtml. Accessed March 9, 2020.
  • 2. Türkiye Odalar ve Borsalar Birliği. Türkiye Sağlık Sektörüne Genel Bakış.; 2017. https://www.tobb.org.tr/saglik/20171229-tss-genel-bakis-tr.pdf. Accessed March 9, 2020.
  • 3. Fries BE. Bibliography of Operations Research in Health-Care Systems. Oper Res. 1976;24(5):801-814. doi:10.1287/opre.24.5.801
  • 4. Pierskalla WP, Brailer DJ. Applications of operations research in health care delivery. Handbooks Oper Res Manag Sci. 1994;6(C):469-505. doi:10.1016/S0927-0507(05)80094-5
  • 5. Brandeau, Margaret L., Sainfort, Francois, Pierskalla WP. Operations Research and Health Care: A Handbook of Methods and Applications.; 2004. doi:10.1057/jos.2009.8
  • 6. Rais A, Vianaa A. Operations research in healthcare: A survey. Int Trans Oper Res. 2011;18(1):1-31. doi:10.1111/j.1475-3995.2010.00767.x
  • 7. Fakhimi M, Probert J. Operations research within UK healthcare: A review. J Enterp Inf Manag. 2013;26(1):21-49. doi:10.1108/17410391311289532
  • 8. Caro JJ, Briggs AH, Siebert U, Kuntz KM. Modeling good research practices-overview: A report of the ISPOR-SMDM modeling good research practices task force-1. Med Decis Mak. 2012;32(5):667-677. doi:10.1177/0272989X12454577
  • 9. Eddy DM, Hollingworth W, Caro JJ, Tsevat J, McDonald KM, Wong JB. Model transparency and validation: A report of the ISPOR-SMDM modeling good research practices task force-7. Med Decis Mak. 2012;32(5):733-743. doi:10.1177/0272989X12454579
  • 10. Briggs AH, Weinstein MC, Fenwick EAL, Karnon J, Sculpher MJ, Paltiel AD. Model parameter estimation and uncertainty analysis: A report of the ISPOR-SMDM modeling good research practices task force working group-6. Med Decis Mak. 2012;32(5):722-732. doi:10.1177/0272989X12458348
  • 11. Roberts M, Russell LB, Paltiel AD, Chambers M, McEwan P, Krahn M. Conceptualizing a model: A report of the ISPOR-SMDM modeling good research practices task force-2. Med Decis Mak. 2012;32(5):678-689. doi:10.1177/0272989X12454941
  • 12. Karnon J, Stahl J, Brennan A, Caro JJ, Mar J, Möller J. Modeling using discrete event simulation: A report of the ISPOR-SMDM modeling good research practices task force-4. Med Decis Mak. 2012;32(5):701-711. doi:10.1177/0272989X12455462
  • 13. Siebert U, Alagoz O, Bayoumi AM, et al. State-transition modeling: A report of the ISPOR-SMDM modeling good research practices task force-3. Med Decis Mak. 2012;32(5):690-700. doi:10.1177/0272989X12455463
  • 14. Simpson KN, Strassburger A, Jones WJ, Dietz B, Rajagopalan R. Comparison of Markov model and discrete-event simulation techniques for HIV. Pharmacoeconomics. 2009;27(2):159-165. doi:10.2165/00019053-200927020-00006
  • 15. Meltzer MI, Damon I, Leduc JW, Donald Millar J. Modeling Potential Responses to Smallpox as a Bioterrorist Weapon. Vol 7. http://www.cdc.gov/ncidod/eid/vol7no6/. Accessed March 9, 2020.
  • 16. Myers ER, McCrory DC, Nanda K, Bastian L, Matchar DB. Mathematical model for the natural history of human papillomavirus infection and cervical carcinogenesis. Am J Epidemiol. 2000;151(12):1158-1171. doi:10.1093/oxfordjournals.aje.a010166
  • 17. Chhatwal J, Kanwal F, Roberts MS, Dunn MA. Cost-effectiveness and budget impact of hepatitis C virus treatment with sofosbuvir and ledipasvir in the United States. Ann Intern Med. 2015;162(6):397-406.
  • 18. Yaylali E, Ivy JS, Taheri J. Systems engineering methods for enhancing the value stream in public health preparedness: The role of Markov models, simulation, and optimization. Public Health Rep. 2014;129. doi:10.1177/00333549141296S419
  • 19. Sanders GD, Bayoumi AM, Sundaram V, et al. Cost-effectiveness of screening for HIV in the era of highly active antiretroviral therapy. N Engl J Med. 2005;352(6):570-585.
  • 20. Shadick NA, Liang MH, Phillips CB, Fossel K, Kuntz KM. The cost-effectiveness of vaccination against Lyme disease. Arch Intern Med. 2001;161(4):554-561. doi:10.1001/archinte.161.4.554
  • 21. Requena-Méndez A, Bussion S, Aldasoro E, et al. Cost-effectiveness of Chagas disease screening in Latin American migrants at primary health-care centres in Europe: a Markov model analysis. Lancet Glob Heal. 2017;5(4):e439-e447. doi:10.1016/S2214-109X(17)30073-6
  • 22. Yaesoubi R, Cohen T. Generalized Markov models of infectious disease spread: A novel framework for developing dynamic health policies. Eur J Oper Res. 2011;215(3):679-687. doi:10.1016/j.ejor.2011.07.016
  • 23. Maillart LM, Ivy JS, Ransom S, Diehl K. Assessing dynamic breast cancer screening policies. Oper Res. 2008;56(6):1411-1427. doi:10.1287/opre.1080.0614
  • 24. Zhang J, Denton BT, Balasubramanian H, et al. Optimization of PSA-Based Screening Decisions for Prostate Cancer Detection Preventive Follow-up Policies for Cardiovascular Diseases View Project Treatment Planning-Modeling View Project Optimization of PSA-Based Screening Decisions for Prostate Cancer D.; 2009. https://www.researchgate.net/publication/228589623. Accessed March 25, 2020.
  • 25. Denton BT, Kurt M, Shah ND, Bryant SC, Smith SA. Optimizing the start time of statin therapy for patients with diabetes. Med Decis Mak. 2009;29(3):351-367. doi:10.1177/0272989X08329462
  • 26. Kurt M, Denton BT, Schaefer AJ, Shah ND, Smith SA. Type 2 diabetes. IIE Trans Healthc Syst Eng. 2011;1(1):49-65. doi:10.1080/19488300.2010.550180
  • 27. Mason JE, England DA, Denton BT, Smith SA, Kurt M, Shah ND. Optimizing statin treatment decisions for diabetes patients in the presence of uncertain future adherence. Med Decis Mak. 2012;32(1):154-166. doi:10.1177/0272989X11404076
  • 28. Klebanoff MJ, Corey KE, Samur S, et al. Cost-effectiveness Analysis of Bariatric Surgery for Patients With Nonalcoholic Steatohepatitis Cirrhosis. JAMA Netw open. 2019;2(2):e190047. doi:10.1001/jamanetworkopen.2019.0047
  • 29. Steimle LN, Denton BT. Markov decision processes for screening and treatment of chronic diseases. In: International Series in Operations Research and Management Science. Vol 248. Springer New York LLC; 2017:189-222. doi:10.1007/978-3-319-47766-4_6
  • 30. Briggs A, Sculpher M. An introduction to Markov modelling for economic evaluation. Pharmacoeconomics. 1998;13(4):397-409. doi:10.2165/00019053-199813040-00003
  • 31. Faissol DM, Griffin PM, Swann JL. Bias in Markov models of disease. Math Biosci. 2009;220(2):143-156. doi:10.1016/j.mbs.2009.05.005
  • 32. Kirsch F. Economic Evaluations of Multicomponent Disease Management Programs with Markov Models: A Systematic Review. Value Heal. 2016;19(8):1039-1054. doi:10.1016/j.jval.2016.07.004
  • 33. WO Kermack AM. A contribution to the mathematical theory of epidemics. Proc R Soc London Ser A, Contain Pap a Math Phys Character. 1927;115(772):700-721. doi:10.1098/rspa.1927.0118
  • 34. Hethcote HW. Mathematics of infectious diseases. SIAM Rev. 2000;42(4):599-653. doi:10.1137/S0036144500371907
  • 35. Lindsay SW, Hole DG, Hutchinson RA, Richards SA, Willis SG. Assessing the future threat from vivax malaria in the United Kingdom using two markedly different modelling approaches. Malar J. 2010;9(1):70.
  • 36. McLean AR, Anderson RM. Measles in developing countries. Part II. The predicted impact of mass vaccination. Epidemiol Infect. 1988;100(3):419-442. doi:10.1017/S0950268800067170
  • 37. Ferrari MJ, Grais RF, Bharti N, et al. The dynamics of measles in sub-Saharan Africa. Nature. 2008;451(7179):679-684. doi:10.1038/nature06509
  • 38. Zhou L, Wang Y, Xiao Y, Li MY. Global dynamics of a discrete age-structured SIR epidemic model with applications to measles vaccination strategies. Math Biosci. 2019;308:27-37. doi:10.1016/j.mbs.2018.12.003
  • 39. Thakkar N, Gilani SSA, Hasan Q, McCarthy KA. Decreasing measles burden by optimizing campaign timing. Proc Natl Acad Sci U S A. 2019;166(22):11069-11073. doi:10.1073/pnas.1818433116
  • 40. Metcalf CJE, Lessler J, Klepac P, Morice A, Grenfell BT, Bjørnstad ON. Structured models of infectious disease: Inference with discrete data. Theor Popul Biol. 2012;82(4):275-282. doi:10.1016/j.tpb.2011.12.001
  • 41. Pandey A, Atkins KE, Medlock J, et al. Strategies for containing Ebola in West Africa. Science. 2014;346(6212):991-995. doi:10.1126/science.1260612
  • 42. Dye C, Williams BG. The population dynamics and control of tuberculosis. Science. 2010;328(5980):856-861. doi:10.1126/science.1185449
  • 43. Chan CH, McCabe CJ, Fisman DN. Core groups, antimicrobial resistance and rebound in gonorrhoea in North America. Sex Transm Infect. 2012;88(3):200-204. doi:10.1136/sextrans-2011-050049
  • 44. Khurana N, Yaylali E, Farnham PG, et al. Impact of Improved HIV Care and Treatment on PrEP Effectiveness in the United States, 2016–2020. JAIDS J Acquir Immune Defic Syndr. 2018;78(4):399-405.
  • 45. Lipsitch M, Cohen T, Cooper B, et al. Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003;300(5627):1966-1970. doi:10.1126/science.1086616
  • 46. Chowell G, Blumberg S, Simonsen L, Miller MA, Viboud C. Synthesizing data and models for the spread of MERS-CoV, 2013: Key role of index cases and hospital transmission. Epidemics. 2014;9:40-51. doi:10.1016/j.epidem.2014.09.011
  • 47. Coburn BJ, Wagner BG, Blower S. Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1). BMC Med. 2009;7(1):30.
  • 48. Bajardi P, Poletto C, Ramasco JJ, Tizzoni M, Colizza V, Vespignani A. Human Mobility Networks, Travel Restrictions, and the Global Spread of 2009 H1N1 Pandemic. Perc M, ed. PLoS One. 2011;6(1):e16591. doi:10.1371/journal.pone.0016591
  • 49. Khazeni N. Effectiveness and Cost-Effectiveness of Vaccination Against Pandemic Influenza (H1N1) 2009. Ann Intern Med. 2009;151(12):829. doi:10.7326/0000605-200912150-00157
  • 50. Fraser C, Donnelly CA, Cauchemez S, et al. Pandemic potential of a strain of influenza A (H1N1): Early findings. Science. 2009;324(5934):1557-1561. doi:10.1126/science.1176062
  • 51. Hethcote HW. An age-structured model for pertussis transmission. Math Biosci. 1997;145(2):89-136. doi:10.1016/S0025-5564(97)00014-X
  • 52. Keeling MJ, Rohani P. Modeling Infectious Diseases in Humans and Animals. Princeton University Press; 2011. doi:10.1016/s1473-3099(08)70147-6
  • 53. Long EF, Brandeau ML, Owens DK. The cost-effectiveness and population outcomes of expanded HIV screening and antiretroviral treatment in the united states. Ann Intern Med. 2010;153(12):778-789. doi:10.7326/0003-4819-153-12-201012210-00004
  • 54. Long EF, Brandeau ML, Owens DK. Potential population health outcomes and expenditures of HIV vaccination strategies in the United States. Vaccine. 2009;27(39):5402-5410. doi:10.1016/j.vaccine.2009.06.063
  • 55. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020;395(10225):689-697. doi:10.1016/S0140-6736(20)30260-9
  • 56. Maier BF, Brockmann D. Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science. 2020;368(6492):742-746. doi:10.1126/science.abb4557
  • 57. Prem K, Liu Y, Russell TW, et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Heal. 2020;5(5):e261-e270. doi:10.1016/S2468-2667(20)30073-6
  • 58. Li Y, Lawley MA, Siscovick DS, Zhang D, Pagán JA. Agent-based modeling of chronic diseases: A narrative review and future research directions. Prev Chronic Dis. 2016;13(5). doi:10.5888/pcd13.150561
  • 59. Farnham PG, Gopalappa C, Sansom SL, et al. Updates of lifetime costs of care and quality-of-life estimates for HIV-infected persons in the United States: late versus early diagnosis and entry into care. JAIDS J Acquir Immune Defic Syndr. 2013;64(2):183-189.
  • 60. Gopalappa C, Farnham PG, Chen YH, Sansom SL. Progression and Transmission of HIV/AIDS (PATH 2.0): A New, Agent-ased Model to Estimate HIV Transmissions in the United States. Med Decis Mak. 2016;37(2):224-233. doi:10.1177/0272989X16668509
  • 61. Lee BY, Brown ST, Cooley P, et al. Vaccination deep into a pandemic wave: Potential mechanisms for a “third wave” and the impact of vaccination. Am J Prev Med. 2010;39(5):e21-e29. doi:10.1016/j.amepre.2010.07.014
  • 62. Lee BY, Brown ST, Cooley P, et al. Simulating school closure strategies to titigate an influenza epidemic. J Public Heal Manag Pract. 2010;16(3):252-261. doi:10.1097/PHH.0b013e3181ce594e
  • 63. Grefenstette JJ, Brown ST, Rosenfeld R, et al. FRED (A Framework for Reconstructing Epidemic Dynamics): An open-source software system for modeling infectious diseases and control strategies using census-based populations. BMC Public Health. 2013;13(1):940. doi:10.1186/1471-2458-13-940
  • 64. Merler S, Ajelli M, Fumanelli L, et al. Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: A computational modelling analysis. Lancet Infect Dis. 2015;15(2):204-211. doi:10.1016/S1473-3099(14)71074-6
  • 65. Olsen J, Jepsen MR. Human papillomavirus transmission and cost-effectiveness of introducing quadrivalent HPV vaccination in Denmark. Int J Technol Assess Health Care. 2010;26(2):183-191. doi:10.1017/S0266462310000085
  • 66. Day TE, Ravi N, Xian H, Brugh A. An Agent-Based Modeling Template for a Cohort of Veterans with Diabetic Retinopathy. Chaum E, ed. PLoS One. 2013;8(6):e66812. doi:10.1371/journal.pone.0066812
  • 67. Li Y, Kong N, Lawley M, Weiss L, Pagán JA. Advancing the use of evidence-based decision-making in local health departments with systems science methodologies. Am J Public Health. 2015;105 Suppl 2(S2):S217-22. doi:10.2105/AJPH.2014.302077
  • 68. Hammond RA, Ornstein JT. A model of social influence on body mass index. Ann N Y Acad Sci. 2014;1331(1):34-42. doi:10.1111/nyas.12344
  • 69. Nianogo RA, Arah OA. Agent-based modeling of noncommunicable diseases: A systematic review. Am J Public Health. 2015;105(3):e20-e31. doi:10.2105/AJPH.2014.302426
  • 70. Sayan M, Hınçal E, Şanlıdağ T, Kaymakamzade B, Sa’ad FT, Baba IA. Dynamics of HIV/AIDS in Turkey from 1985 to 2016. Qual Quant. 2018;52(1):711-723. doi:10.1007/s11135-017-0648-7
  • 71. Kaymakamzade B, Şanlıdağ T, Hınçal E, Sayan M, Sa’ad FT, Baba IA. Role of awareness in controlling HIV/AIDS: a mathematical model. Qual Quant. 2018;52(1):625-637. doi:10.1007/s11135-017-0640-2
  • 72. Örmeci N, Malhan S, Balık İ, Ergör G, Razavi H, Robbins S. Scenarios to manage the hepatitis C disease burden and associated economic impact of treatment in Turkey. Hepatol Int. 2017;11(6):509-516.
  • 73. Yaylali E, Ozdemir B, Lacin N, Ceyil S. Modelling Hepatitis C Infections Among People Who Inject Drugs in Turkey: Is HCV Elimination Possible? In: Calisir F, Korhan O, eds. Industrial Engineering in the Digital Disruption Era: Selected Papers from the Global Joint Conference on Industrial Engineering and Its Application Areas, GJCIE 2019. Springer, Cham; 2020:360-374. doi:10.1007/978-3-030-42416-9_32
  • 74. Koyuncu M, Erol R. Optimal resource allocation model to mitigate the impact of pandemic influenza: A case study for Turkey. J Med Syst. 2010;34(1):61-70. doi:10.1007/s10916-008-9216-y
  • 75. Wolfson LJ, Daniels VJ, Pillsbury M, et al. Cost-effectiveness analysis of universal varicella vaccination in Turkey using a dynamic transmission model. PLoS One. 2019;14(8):e0220921. doi:10.1371/journal.pone.0220921
  • 76. Bakir M, Türel Ö, Topachevskyi O. Cost-effectiveness of new pneumococcal conjugate vaccines in Turkey: A decision analytical model. BMC Health Serv Res. 2012;12(1). doi:10.1186/1472-6963-12-386
  • 77. Marijam A, Olbrecht J, Ozakay A, Eken V, Meszaros K. Cost-Effectiveness Comparison of Pneumococcal Conjugate Vaccines in Turkish Children. Value Heal Reg Issues. 2019;19:34-44. doi:10.1016/j.vhri.2018.11.007
  • 78. Ozmen V, Cakar B, Gokmen E, et al. Cost effectiveness of Gene Expression Profiling in Patients with Early-Stage Breast Cancer in a Middle-Income Country, Turkey: Results of a Prospective Multicenter Study. Eur J Breast Heal. 2019;15(3):183-190. doi:10.5152/ejbh.2019.4761
  • 79. Balçik PY, Şahin B. Cost-effectiveness analysis of pemetrexed and gemcitabine treatment for advanced nonsmall cell lung cancer in turkey. Turkish J Med Sci. 2016;46(1):152-158. doi:10.3906/sag-1408-4
  • 80. Sözmen K, Unal B, Capewell S, Critchley J, O’Flaherty M. Estimating diabetes prevalence in Turkey in 2025 with and without possible interventions to reduce obesity and smoking prevalence, using a modelling approach. Int J Public Health. 2014;60(1):13-21. doi:10.1007/s00038-014-0622-2
  • 81. Islek D, Sozmen K, Unal B, et al. Estimating the potential contribution of stroke treatments and preventative policies to reduce the stroke and ischemic heart disease mortality in Turkey up to 2032: a modelling study. BMC Public Health. 2016;16(1):46. doi:10.1186/s12889-015-2655-8
  • 82. Kretzschmar M, Wallinga J. Mathematical Models in Infectious Disease Epidemiology. In: Krämer A, Kretzschmar M, Krickeberg K, eds. Modern Infectious Disease Epidemiology. New York, NY: Springer; 2009:209-221. doi:10.1007/978-0-387-93835-6_12
There are 82 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Review article
Authors

Emine Yaylalı 0000-0002-6707-9521

Publication Date September 30, 2020
Submission Date July 24, 2020
Acceptance Date September 7, 2020
Published in Issue Year 2020 Volume: 5 Issue: 3

Cite

AMA Yaylalı E. Sağlık Araştırmalarında Matematik Model Kullanımı. OTJHS. September 2020;5(3):528-540. doi:10.26453/otjhs.773674

Creative Commons License

Online Türk Sağlık Bilimleri Dergisi [Online Turkish Journal of Health Sciences (OTJHS)] is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an open-access journal distributed under the terms of the Creative Commons Attribution License (CC BY-NC 4.0). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Click here to get help about article submission processes and "Copyright Transfer Form".