Review
BibTex RIS Cite

Nanotechnology and Nanobiomaterials: Redefining Ways of Managing Oral Cancer

Year 2020, Volume: 5 Issue: 4, 693 - 700, 30.12.2020
https://doi.org/10.26453/otjhs.753846

Abstract

Nano-biotechnology can be considered as application of various nanotechnologies in the biological field. With the advent of nano-particles, a revolution has come in the scientific community. The convergence of nanotechnology and medicine recently led to an interdisciplinary field, nanomedicine, which brings together engineers, physicists, biologists, chemists, mathematicians, and physicians striving to improve detection, imaging, and drug-delivery devices. The approaches to nanomedicine range from the medical use of nanomaterials, to nanoelectronics biosensors, and even possible future applications of molecular nanotechnology. Cancer is a leading cause of mortality in the world. Cancers of the head and neck—including the salivary glands, thyroid, and the mucosal lining of the oral cavity, pharynx, nasopharynx, and larynx—account for the high percentage of malignancies of the world. At present the treatment modalities available are very limited. A multidisciplinary approach is needed, including the cooperation of biophysics experts, molecular biologists and medical practitioners, to find ways of using nano-biotechnologies for cancer management. Hence future research needs to focus on designing new strategies where nano-biomaterials and medicine can come together to find a cure.

References

  • Keshavarzi M, Darijani M, Momeni F, et al. Molecular imaging and oral cancer diagnosis and therapy. J Cell Biochem. 2017;118(10):3055-3060. doi:10.1002/jcb.26042
  • Silva GA. Introduction to nanotechnology and its applications to medicine. Surg Neurol. 2004;61:216-20.
  • Myers EN, Suen JY. Perspectives in head and neck cancer. In cancer of the head and neck. Edited by Myers EN, Suen JY, Myers JN, Hanna EY. Philadelphia, PA: Saunders; 2003:1-5.
  • Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354:567–578.
  • Chen XJ, Zhang XQ, Liu Q, Zhang J, Zhou G. Nanotechnology: a promising method for oral cancer detection and diagnosis. J Nanobiotechnology. 2018;16(1):52.
  • American Cancer Society: Cancer Facts and Figures, 2009. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2009.html. Accessed May 10, 2020.
  • Lentsch EJ, Myers JN. Pathogenesis and progression of squamous cell carcinoma of the head and neck. In Cancer of the Head and Neck. Edited by Myers EN, Suen JY, Myers JN, Hanna EY. Philadelphia, PA: Saunders; 2003:5-28.
  • Lumerman H1, Freedman P, Kerpel S. Oral epithelial dysplasia and the development of invasive squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;79(3):321-9.
  • Hall CS, Scott MJ, Lanza GM, Miller JG, Wickline SA. The extracellular matrix is an important source of ultrasound backscatter from myocardium. J Acoust Soc Am. 2000;107(1):612-9.
  • Sokolov K, Follen M, Aaron J, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 2003;63(9):1999-2004.
  • Ravi Kumar Reddy J, Guna Sagar E, Bala Chandra Prathap S, Ramesh Kumar B, Madhusudhana Chetty C. Nanomedicine and drug delivery. Revolution in health system. Journal of Global Trends in Pharmaceutical Sciences. 2011;2:21-30.
  • Bayda S, Hadla M, Palazzolo S, et al. Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic. Curr Med Chem. 2018;25(34):4269-4303. doi:10.2174/0929867325666171229141156
  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomed. 2007;2:681-693.
  • Bao G, Mitragotri S, Tong S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng. 2013;15:253-282. doi:10.1146/annurev-bioeng-071812-152409
  • Nevozhay D, Kanska U, Budzynska R, Boratyński J. Current status of research on conjugates and related drug delivery systems in the treatment of cancer and other diseases. Postepy Hig. Med. Dosw. 2007;61:350-360.
  • Ai J, Biazar E, Jafarpour M, et al. Nanotoxicology and nanoparticle safety in biomedical designs. Int. J. Nanomedicine 2011;6:1117-1127.
  • Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2003;2:347–360.
  • Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005;4:145-160.
  • Blanco E, Kessinger CW, Sumer BD, Gao J. Multifunctional micellar nanomedicine for cancer therapy. Exp. Biol. Med. 2009;234:123-131.
  • Sankhyan A, Pawar P. Recent trends in noisome as vesicular drug delivery system. J. Appl. Pharm. Sci. 2012;2:20-32.
  • Sanvicens N, Marco MP. Multifunctional nanoparticles—Properties and prospects for their use in human medicine. Trends Biotechnol. 2008;26:425-433.
  • Svenson S, Tomalia DA. Dendrimers in biomedical applications-reflections on the field. Adv. Drug Deliv. Rev. 2005;57:2106-2129.
  • Wang H, Xing D, Xiang L. Photoacoustic imaging using an ultrasonic Fresnel zone plate transducer. J. Phys. D: Appl. Phys. 2008;41(9). doi: https://doi.org/10.1088/0022-3727/41/9/095111
  • Whitesides GM. The “right” size in nanobiotechnology. Nat Biotechnol. 2003;21:1161–1165.
  • Bac LH, Kim JS, Kim JC. Size, optical and stability properties of gold nanoparticles synthesized by electrical explosion of wire in different aqueous media. Rev. Adv. Mater. Sci. 2011;28:117-121.
  • Guo J, Rahme K, He Y, Li LL, Holmes JD, O'Driscoll CM. Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomedicine. 2017;12:6131-6152. doi:10.2147/IJN.S140772
  • Li PC, Wei CW, Liao CK, et al. Photoacoustic imaging of multiple targets using gold nanorods. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54(8):1642-7.
  • Krishnan S, Diagaradjane P, Cho SH. Nanoparticle-mediated thermal therapy: evolving strategies for prostate cancer therapy. Int J Hyperthermia. 2010;26(8):775-89.
  • Melancon MP, Lu W, Yang Z, et al. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther. 2008;7(6):1730-9.
  • Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005;5(4):709-11.
  • Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909-915.
  • Pistoia V, Morandi F, Pezzolo A, Raffaghello L, Prigione I. MYCN: from oncoprotein to tumor-associated antigen. Front Oncol.2012;2:174.
  • Nasir A. Nanotechnology in vaccine development: a step forward. J Invest Dermatol. 2009;129(5):1055-1059.
  • Viswambari Devi R, Doble M, Verma RS. Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens Bioelectron. 2015;68:688-698. doi:10.1016/j.bios.2015.01.066
  • Malmo J, Sandvig A, Vårum KM, Strand SP. Nanoparticle mediated P-glycoprotein silencing for improved drug delivery across the blood-brain barrier: a siRNA-chitosan approach. PLoS One. 2013;8(1):e54182.
  • Terrones M, Terrones H. The carbon nanocosmos: novel materials for the twenty-first century. Philos Transact A Math Phys Eng Sci. 2003;361(1813):2789-2806.
  • Shen H, Ackerman AL, Cody V, et al. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology. 2006;117(1):78-88.
  • Salcedo M, Bercovici N, Taylor R, et al. Vaccination of melanoma patients using dendritic cells loaded with an allogeneic tumor cell lysate. Cancer Immunol Immunother. 2006;55(7):819-829.
  • Pantarotto D, Partidos CD, Hoebeke J, et al. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol. 2003;10(10):961-966.
  • Madani SY, Tan A, Dwek M, Seifalian AM. Functionalization of single-walled carbon nanotubes and their binding to cancer cells. Int J Nanomedicine. 2012;7:905-914.
  • Kam NW, Liu Z, Dai H. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed Engl. 2006;45(4):577-581.
  • Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta. 2006;1758(3):404-412.
  • Sakaeda T, Hirano K. O/W lipid emulsions for parenteral drug delivery. II. Effect of composition on pharmacokinetics of incorporated drug. J Drug Target. 1995;3(3):221-230.
  • Ge W, Hu PZ, Huang Y, et al. The antitumor immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine following different administration routes. Oncol Rep. 2009;22(4):915-920.
  • Ge W, Sui YF, Wu DC, et al. MAGE-1/heat shock protein 70/MAGE-3 fusion protein vaccine in nanoemulsion enhances cellular and humoral immune responses to MAGE-1 or MAGE-3 in vivo. Cancer Immunol Immunother. 2006;55(7):841-849.
  • Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS. Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev. 2001;51(1-3):81-96.
  • Shi SF, Jia JF, Guo XK, et al. Biocompatibility of chitosan-coated iron oxide nanoparticles with osteoblast cells. Int J Nanomedicine. 2012;7:5593-5602.
  • Chen F, Shi Z, Neoh KG, Kang ET. Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. Biotechnol Bioeng. 2009;104(1):30-39.
  • Sayin B, Somavarapu S, Li XW, et al. Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int J Pharm. 2008;363(1-2):139-148.
  • Seferian PG, Martinez ML. Immune stimulating activity of two new chitosan containing adjuvant formulations. Vaccine. 2009;19(6):661-668.
  • Alok A, Panat S, Aggarwal A, Upadhyay N, Agarwal N, Kishore M. Nanotechnology: A boon in oral cancer diagnosis and therapeutics. SRM J Res Dent Sci. 2013;4:154-60.
  • Revia RA, Stephen ZR, Zhang M. Theranostic Nanoparticles for RNA-Based Cancer Treatment. Acc Chem Res. 2019;52(6):1496-1506. doi:10.1021/acs.accounts.9b00101

Nanoteknoloji ve Nanobiyomalzemeler: Ağız Kanserini Yönetme Yollarını Yeniden Tanımlama

Year 2020, Volume: 5 Issue: 4, 693 - 700, 30.12.2020
https://doi.org/10.26453/otjhs.753846

Abstract

Nano-biyoteknoloji, biyolojik alanda çeşitli nanoteknolojilerin uygulaması olarak düşünülebilir. Nano parçacıkların ortaya çıkmasıyla, bilim camiasında bir devrim gerçekleşti. Nanoteknoloji ve tıbbın yakınlaşması, son zamanlarda disiplinler arası bir alana, yani nanotıpa yol açtı; bu, algılama, görüntüleme ve ilaç dağıtım cihazlarını iyileştirmeye çalışan mühendisleri, fizikçileri, biyologları, kimyagerleri, matematikçileri ve doktorları bir araya getirdi. Kanser, dünyadaki ölümlerin önde gelen nedenidir. Tükürük bezleri, tiroid, ağız boşluğu, yutak, nazofarenks ve gırtlak dahil olmak üzere baş ve boyun kanserleri, dünyadaki kanser vakalarının yüksek yüzdesini oluşturur. Şu anda mevcut tedavi modaliteleri çok sınırlıdır. Kanser yönetimi için nano-biyoteknolojileri kullanmanın yollarını bulmak için biyofizik uzmanları, moleküler biyologlar ve tıp pratisyenlerinin işbirliğini içeren multidisipliner bir yaklaşıma ihtiyaç vardır. Bu nedenle bir tedavi bulmak için nano biyomalzeme ve tıbbın bir araya gelebileceği yeni stratejiler tasarlamaya odaklanılması gerekiyor.

References

  • Keshavarzi M, Darijani M, Momeni F, et al. Molecular imaging and oral cancer diagnosis and therapy. J Cell Biochem. 2017;118(10):3055-3060. doi:10.1002/jcb.26042
  • Silva GA. Introduction to nanotechnology and its applications to medicine. Surg Neurol. 2004;61:216-20.
  • Myers EN, Suen JY. Perspectives in head and neck cancer. In cancer of the head and neck. Edited by Myers EN, Suen JY, Myers JN, Hanna EY. Philadelphia, PA: Saunders; 2003:1-5.
  • Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354:567–578.
  • Chen XJ, Zhang XQ, Liu Q, Zhang J, Zhou G. Nanotechnology: a promising method for oral cancer detection and diagnosis. J Nanobiotechnology. 2018;16(1):52.
  • American Cancer Society: Cancer Facts and Figures, 2009. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2009.html. Accessed May 10, 2020.
  • Lentsch EJ, Myers JN. Pathogenesis and progression of squamous cell carcinoma of the head and neck. In Cancer of the Head and Neck. Edited by Myers EN, Suen JY, Myers JN, Hanna EY. Philadelphia, PA: Saunders; 2003:5-28.
  • Lumerman H1, Freedman P, Kerpel S. Oral epithelial dysplasia and the development of invasive squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;79(3):321-9.
  • Hall CS, Scott MJ, Lanza GM, Miller JG, Wickline SA. The extracellular matrix is an important source of ultrasound backscatter from myocardium. J Acoust Soc Am. 2000;107(1):612-9.
  • Sokolov K, Follen M, Aaron J, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 2003;63(9):1999-2004.
  • Ravi Kumar Reddy J, Guna Sagar E, Bala Chandra Prathap S, Ramesh Kumar B, Madhusudhana Chetty C. Nanomedicine and drug delivery. Revolution in health system. Journal of Global Trends in Pharmaceutical Sciences. 2011;2:21-30.
  • Bayda S, Hadla M, Palazzolo S, et al. Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic. Curr Med Chem. 2018;25(34):4269-4303. doi:10.2174/0929867325666171229141156
  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomed. 2007;2:681-693.
  • Bao G, Mitragotri S, Tong S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng. 2013;15:253-282. doi:10.1146/annurev-bioeng-071812-152409
  • Nevozhay D, Kanska U, Budzynska R, Boratyński J. Current status of research on conjugates and related drug delivery systems in the treatment of cancer and other diseases. Postepy Hig. Med. Dosw. 2007;61:350-360.
  • Ai J, Biazar E, Jafarpour M, et al. Nanotoxicology and nanoparticle safety in biomedical designs. Int. J. Nanomedicine 2011;6:1117-1127.
  • Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2003;2:347–360.
  • Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005;4:145-160.
  • Blanco E, Kessinger CW, Sumer BD, Gao J. Multifunctional micellar nanomedicine for cancer therapy. Exp. Biol. Med. 2009;234:123-131.
  • Sankhyan A, Pawar P. Recent trends in noisome as vesicular drug delivery system. J. Appl. Pharm. Sci. 2012;2:20-32.
  • Sanvicens N, Marco MP. Multifunctional nanoparticles—Properties and prospects for their use in human medicine. Trends Biotechnol. 2008;26:425-433.
  • Svenson S, Tomalia DA. Dendrimers in biomedical applications-reflections on the field. Adv. Drug Deliv. Rev. 2005;57:2106-2129.
  • Wang H, Xing D, Xiang L. Photoacoustic imaging using an ultrasonic Fresnel zone plate transducer. J. Phys. D: Appl. Phys. 2008;41(9). doi: https://doi.org/10.1088/0022-3727/41/9/095111
  • Whitesides GM. The “right” size in nanobiotechnology. Nat Biotechnol. 2003;21:1161–1165.
  • Bac LH, Kim JS, Kim JC. Size, optical and stability properties of gold nanoparticles synthesized by electrical explosion of wire in different aqueous media. Rev. Adv. Mater. Sci. 2011;28:117-121.
  • Guo J, Rahme K, He Y, Li LL, Holmes JD, O'Driscoll CM. Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomedicine. 2017;12:6131-6152. doi:10.2147/IJN.S140772
  • Li PC, Wei CW, Liao CK, et al. Photoacoustic imaging of multiple targets using gold nanorods. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54(8):1642-7.
  • Krishnan S, Diagaradjane P, Cho SH. Nanoparticle-mediated thermal therapy: evolving strategies for prostate cancer therapy. Int J Hyperthermia. 2010;26(8):775-89.
  • Melancon MP, Lu W, Yang Z, et al. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther. 2008;7(6):1730-9.
  • Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005;5(4):709-11.
  • Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909-915.
  • Pistoia V, Morandi F, Pezzolo A, Raffaghello L, Prigione I. MYCN: from oncoprotein to tumor-associated antigen. Front Oncol.2012;2:174.
  • Nasir A. Nanotechnology in vaccine development: a step forward. J Invest Dermatol. 2009;129(5):1055-1059.
  • Viswambari Devi R, Doble M, Verma RS. Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens Bioelectron. 2015;68:688-698. doi:10.1016/j.bios.2015.01.066
  • Malmo J, Sandvig A, Vårum KM, Strand SP. Nanoparticle mediated P-glycoprotein silencing for improved drug delivery across the blood-brain barrier: a siRNA-chitosan approach. PLoS One. 2013;8(1):e54182.
  • Terrones M, Terrones H. The carbon nanocosmos: novel materials for the twenty-first century. Philos Transact A Math Phys Eng Sci. 2003;361(1813):2789-2806.
  • Shen H, Ackerman AL, Cody V, et al. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology. 2006;117(1):78-88.
  • Salcedo M, Bercovici N, Taylor R, et al. Vaccination of melanoma patients using dendritic cells loaded with an allogeneic tumor cell lysate. Cancer Immunol Immunother. 2006;55(7):819-829.
  • Pantarotto D, Partidos CD, Hoebeke J, et al. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol. 2003;10(10):961-966.
  • Madani SY, Tan A, Dwek M, Seifalian AM. Functionalization of single-walled carbon nanotubes and their binding to cancer cells. Int J Nanomedicine. 2012;7:905-914.
  • Kam NW, Liu Z, Dai H. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed Engl. 2006;45(4):577-581.
  • Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta. 2006;1758(3):404-412.
  • Sakaeda T, Hirano K. O/W lipid emulsions for parenteral drug delivery. II. Effect of composition on pharmacokinetics of incorporated drug. J Drug Target. 1995;3(3):221-230.
  • Ge W, Hu PZ, Huang Y, et al. The antitumor immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine following different administration routes. Oncol Rep. 2009;22(4):915-920.
  • Ge W, Sui YF, Wu DC, et al. MAGE-1/heat shock protein 70/MAGE-3 fusion protein vaccine in nanoemulsion enhances cellular and humoral immune responses to MAGE-1 or MAGE-3 in vivo. Cancer Immunol Immunother. 2006;55(7):841-849.
  • Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS. Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev. 2001;51(1-3):81-96.
  • Shi SF, Jia JF, Guo XK, et al. Biocompatibility of chitosan-coated iron oxide nanoparticles with osteoblast cells. Int J Nanomedicine. 2012;7:5593-5602.
  • Chen F, Shi Z, Neoh KG, Kang ET. Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. Biotechnol Bioeng. 2009;104(1):30-39.
  • Sayin B, Somavarapu S, Li XW, et al. Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int J Pharm. 2008;363(1-2):139-148.
  • Seferian PG, Martinez ML. Immune stimulating activity of two new chitosan containing adjuvant formulations. Vaccine. 2009;19(6):661-668.
  • Alok A, Panat S, Aggarwal A, Upadhyay N, Agarwal N, Kishore M. Nanotechnology: A boon in oral cancer diagnosis and therapeutics. SRM J Res Dent Sci. 2013;4:154-60.
  • Revia RA, Stephen ZR, Zhang M. Theranostic Nanoparticles for RNA-Based Cancer Treatment. Acc Chem Res. 2019;52(6):1496-1506. doi:10.1021/acs.accounts.9b00101
There are 52 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Review article
Authors

Akanksha Juneja 0000-0003-4127-1133

Amina Sultan This is me 0000-0001-5245-4416

Publication Date December 30, 2020
Submission Date June 16, 2020
Acceptance Date September 22, 2020
Published in Issue Year 2020 Volume: 5 Issue: 4

Cite

AMA Juneja A, Sultan A. Nanotechnology and Nanobiomaterials: Redefining Ways of Managing Oral Cancer. OTJHS. December 2020;5(4):693-700. doi:10.26453/otjhs.753846

Creative Commons License

Online Türk Sağlık Bilimleri Dergisi [Online Turkish Journal of Health Sciences (OTJHS)] is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an open-access journal distributed under the terms of the Creative Commons Attribution License (CC BY-NC 4.0). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Click here to get help about article submission processes and "Copyright Transfer Form".