Research Article
BibTex RIS Cite

Aladdin HW2.0 Optik Düşük Koherens İnterferometre ile Oküler Biyometri ve Pupillometrinin Yeniden Üretilebilirliği

Year 2022, Volume: 7 Issue: 2, 278 - 285, 01.06.2022
https://doi.org/10.26453/otjhs.1057079

Abstract

Amaç: Çalışmanın amacı kataraktlı hastalarda ve sağlıklı bireylerde Aladdin HW2.0 (Topcon, Tokyo, Japan) ile oküler biyometri ve pupillometrinin yeniden üretilebilirliğini değerlendirmekti.
Materyal ve Metot: Bu prospektif çalışma sağlıklı bireylerin ve kataraktlı hastaların gözlerinde gerçekleştirildi. Tam bir oftalmolojik muayeneden sonra, iki operator tarafından Aladdin biyometre ile aksiyel uzunluk (AU), ön kamara derinliği (ÖKD), keratometri (K değerleri), limbus-limbus mesafesi (LLM), göz içi lens (GİL) güçleri ve pupillometrik parametreler ölçüldü.
Bulgular: Kataraktlı 40 hastanın 72 gözü, 29 sağlıklı bireyin 57 gözü değerlendirildi. İki grupta da AU, ÖKD, K değerleri, LLM ve GİL güç formülleri yüksek düzeyde yeniden üretilebilirliğe sahipti [sınıf içi korelasyon katsayısı (SKK)>0,900]. Kataraktlı hastalarda AU, sağlıklı bireylerde ÖKD en yüksek yeniden üretilebilirlik gösteren parametreydi. Kataraktlı hastalarda pupillometrinin SKK değerleri 0,900'den daha düşüktü (0,100 ile 0,882 aralığında). Yeniden üretilebilirliği en kötü parametre dinamik pupillometri maksimum çaptı. Sağlıklı gruptan elde edilen fotopik pupil çapı dışındaki pupillometri parametreleri %95 LoA için oldukça geniş bir aralıkta dağılıyordu.
Sonuç: Aladdin HW2.0 optik düşük koherens interferometre, pupillometri ölçümleri hariç AU, ÖKD, K değerleri, LLM ve IOL güç formülleri için mükemmel operatörler arası yeniden üretilebilirlik gösterdi. 

Supporting Institution

Destekleyen kurum bulunmamaktadır.

References

  • Turczynowska M, Koźlik-Nowakowska K, Gaca-Wysocka M, Grzybowski A. Effective ocular biometry and intraocular lens power calculation. Eur Ophthalmic Rev. 2016;10(2):94–100. doi:10.17925/EOR.2016.10.02.94
  • Huang J, Savini G, Wu F, et al. Repeatability and reproducibility of ocular biometry using a new noncontact optical low-coherence interferometer. J Cataract and Refract Surg. 2015;41(10):2233-2241. doi:10.1016/j.jcrs.2015.10.062
  • Savini G, Hoffer KJ, Barboni P, et al. Correction: Accuracy of optical biometry combined with placido disc corneal topography for intraocular lens power calculation. PLoS One. 2017;12(3):e0175145. doi:10.1371/journal.pone.0175145
  • Mandal P, Berrow EJ, Naroo SA, et al. Validity and repeatability of the Aladdin ocular biometer. B J Ophthalmol. 2014;98(2):256-258. doi:10.1136/bjophthalmol-2013-304002
  • Optical biometry & topography system Aladdin series. Available at:http://www.topcon.com.hr/pdf/topcon-aladdin-brochure-EN.pdf. Accessed October 2, 2015.
  • Kaya F, Kocak I, Aydin A, Baybora H, Karabela Y. Comparison of different formulas for intraocular lens power calculation using a new optical biometer. J Fr Ophthalmol. 2015;38(8):717-722. doi:10.1016/j.jfo.2015.03.006
  • Garza-Leon M, Fuentes-de la Fuente HA, García-Treviño AV. Comparison of ocular biometry using the new SC-OCT-based optical biometer and OLCI in patients with clear lens. Vis. Pan-Am. 2016;15(3):75-79.
  • McAlinden C, Gao R, Yu A, et al. Repeatability and agreement of ocular biometry measurements: Aladdin versus Lenstar. B J Ophthalmol. 2017;101(9):1223-1229. doi:10.1136/bjophthalmol-2016-309365
  • Hoffer KJ, Shammas HJ, Savini G, Huang J. Multicenter study of optical low-coherence interferometry and partial-coherence interferometry optical biometers with patients from the United States and China. J Cataract Refract Surg. 2016;42(1):62-67. doi:10.1016/j.jcrs.2015.07.041
  • Sabatino F, Findl O, Maurino V. Comparative analysis of optical biometers. J Cataract Refract Surg. 2016;42(5):685-693. doi:10.1016/j.jcrs.2016.01.051
  • Tang M, Chen A, Li Y, Huang D. Corneal power measurement with Fourier-domain optical coherence tomography. J Cataract Refract Surg. 2010;36(12):2115-2122. doi:10.1016/j.jcrs.2010.07.018
  • Dharwadkar S, Nayak B K. Corneal topography and tomography. J Clin Ophthalmol Res. 2015;3(1):45-62. doi:10.4103/2320-3897.149379
  • Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327(8476):307–310. doi:10.1016/S0140-6736(86)90837-8
  • Currie LA. and Svehla G. Nomenclature for the presentation of results of chemical analysis (IUPAC Recommendations 1994). Pure Appl. Chem. 1994;66:595-608. doi:10.1351/pac199466030595
  • Milka M, Wylegala E, Nowinska A, Janiszewska D, Weglarz B. Comparison of the biometric measurements obtained using IOL Master and ALADDIN systems. Acta Ophthalmol. 2013;91:S252. doi:10.1111/j.1755-3768.2013.4451.x
  • Sorkin N, Rosenblatt A, Barequet IS. Predictability of biometry in patients undergoing cataract surgery. Optom Vis Sci. 2016;93(12):1545-1551. doi:10.1097/OPX.0000000000000990
  • Huang Y, Tang X, Deng J. Comparison of biometric measurements of ALADDIN versus IOL Master 500 in cataract patients. J Clin Ophthalmol. 2015;23:21-23.
  • McAlinden C, Wang Q, Gao R, et al. Axial length measurement failure rates with biometers using swept-source optical coherence tomography compared to partial-coherence interferometry and optical low-coherence interferometry. Am J Ophthalmol. 2017;173:64-69. doi:10.1016/j.ajo.2016.09.019
  • Ortiz A, Galvis V, Tello A, et al. Comparison of three optical biometers: IOLMaster 500, Lenstar LS 900 and Aladdin. Int Ophthalmol. 2019;39(8):1809-1818. doi:10.1007/s10792-018-1006-z
  • Ceran BB, Hashas Karatepe AS, Tasindi E. Can we use anterior segment parameters of an optical biometer and a combined topography system interchangeably? Glo-Kat. 2020;15(1)):38-44. doi:10.37844/glauc.cat.2020.15.8
  • Kanclerz P, Przewłócka K, Wang X. Inter-device measurement variability of vital data parameters for keratorefractive and cataract refractive surgery. Ther Adv Ophthalmol. 2021;13. doi:10.1177/25158414211045750
  • Rosen E. The Pupil and refractive surgery. In: Kohnen T, Koch DD, eds. Cataract and refractive surgery. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. 2005;289-302. doi:10.1007/3-540-26678-X_18
  • Md-Muziman-Syah MM, Suhaimi MA, Sulaiman UH, et al. Mesopic pupillometry in pre-LASIK patients by a Placido-disc topographer and Hartmann-shack aberrometer. Mal J Med Health Sci. 2021;17(2):197-202.
  • Espinosa J, Roig AB, Pérez J, Mas D. A high-resolution binocular video-oculography system: assessment of pupillary light reflex and detection of an early incomplete blink and an upward eye movement. Biomed Eng Online. 2015;14(1):1-12. doi:10.1186/s12938-015-0016-6
  • Kiziltoprak H, Tekin K, Yetkin E, Sekeroglu MA. Static and dynamic pupil characteristics in myopic anisometropic amblyopia. Beyoglu Eye J. 2020;5(2):86-92. doi:10.14744/bej.2020.08760

Reproducibility of Ocular Biometry and Pupillometry with the Aladdin HW2.0 Optical Low-Coherence Interferometer

Year 2022, Volume: 7 Issue: 2, 278 - 285, 01.06.2022
https://doi.org/10.26453/otjhs.1057079

Abstract

Objective: The purpose of the study was to evaluate the reproducibility of ocular biometry and pupillometry with the Aladdin HW2.0 (Topcon, Tokyo, Japan) in patients with cataracts and healthy subjects.
Materials and Methods: This prospective study was performed in eyes of healthy subjects and patients with cataracts. After a full ophthalmological examination; axial length (AL), anterior chamber depth (ACD), keratometry (K values), white-to-white (WTW), intraocular lens (IOL) powers, and pupillometric parameters were measured with the Aladdin biometer by two operators.
Results: 72 eyes of 40 patients with cataracts and 57 eyes of 29 healthy subjects were evaluated. AL, ACD, K values, WTW and IOL power formulas were highly reproducible [intraclass correlation coefficient (ICC)>0.900] in two groups. AL was the most reproducible parameter in patients with cataracts, ACD in the healthy subjects. The ICC values of pupillometry were lower than 0.900 (range from 0.100 to 0.882) in patients with cataracts. The worst reproducible parameter was the maximum diameter of dynamic pupillometry. Except for the photopic pupil diameter from the healthy group, pupillometry parameters were within a quite wide range for 95% LoA.
Conclusion: The Aladdin HW2.0 optical low coherence interferometer showed excellent inter-operator reproducibility for AL, ACD, K values, WTW and IOL power formulas except for pupillometry measurements. 

References

  • Turczynowska M, Koźlik-Nowakowska K, Gaca-Wysocka M, Grzybowski A. Effective ocular biometry and intraocular lens power calculation. Eur Ophthalmic Rev. 2016;10(2):94–100. doi:10.17925/EOR.2016.10.02.94
  • Huang J, Savini G, Wu F, et al. Repeatability and reproducibility of ocular biometry using a new noncontact optical low-coherence interferometer. J Cataract and Refract Surg. 2015;41(10):2233-2241. doi:10.1016/j.jcrs.2015.10.062
  • Savini G, Hoffer KJ, Barboni P, et al. Correction: Accuracy of optical biometry combined with placido disc corneal topography for intraocular lens power calculation. PLoS One. 2017;12(3):e0175145. doi:10.1371/journal.pone.0175145
  • Mandal P, Berrow EJ, Naroo SA, et al. Validity and repeatability of the Aladdin ocular biometer. B J Ophthalmol. 2014;98(2):256-258. doi:10.1136/bjophthalmol-2013-304002
  • Optical biometry & topography system Aladdin series. Available at:http://www.topcon.com.hr/pdf/topcon-aladdin-brochure-EN.pdf. Accessed October 2, 2015.
  • Kaya F, Kocak I, Aydin A, Baybora H, Karabela Y. Comparison of different formulas for intraocular lens power calculation using a new optical biometer. J Fr Ophthalmol. 2015;38(8):717-722. doi:10.1016/j.jfo.2015.03.006
  • Garza-Leon M, Fuentes-de la Fuente HA, García-Treviño AV. Comparison of ocular biometry using the new SC-OCT-based optical biometer and OLCI in patients with clear lens. Vis. Pan-Am. 2016;15(3):75-79.
  • McAlinden C, Gao R, Yu A, et al. Repeatability and agreement of ocular biometry measurements: Aladdin versus Lenstar. B J Ophthalmol. 2017;101(9):1223-1229. doi:10.1136/bjophthalmol-2016-309365
  • Hoffer KJ, Shammas HJ, Savini G, Huang J. Multicenter study of optical low-coherence interferometry and partial-coherence interferometry optical biometers with patients from the United States and China. J Cataract Refract Surg. 2016;42(1):62-67. doi:10.1016/j.jcrs.2015.07.041
  • Sabatino F, Findl O, Maurino V. Comparative analysis of optical biometers. J Cataract Refract Surg. 2016;42(5):685-693. doi:10.1016/j.jcrs.2016.01.051
  • Tang M, Chen A, Li Y, Huang D. Corneal power measurement with Fourier-domain optical coherence tomography. J Cataract Refract Surg. 2010;36(12):2115-2122. doi:10.1016/j.jcrs.2010.07.018
  • Dharwadkar S, Nayak B K. Corneal topography and tomography. J Clin Ophthalmol Res. 2015;3(1):45-62. doi:10.4103/2320-3897.149379
  • Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327(8476):307–310. doi:10.1016/S0140-6736(86)90837-8
  • Currie LA. and Svehla G. Nomenclature for the presentation of results of chemical analysis (IUPAC Recommendations 1994). Pure Appl. Chem. 1994;66:595-608. doi:10.1351/pac199466030595
  • Milka M, Wylegala E, Nowinska A, Janiszewska D, Weglarz B. Comparison of the biometric measurements obtained using IOL Master and ALADDIN systems. Acta Ophthalmol. 2013;91:S252. doi:10.1111/j.1755-3768.2013.4451.x
  • Sorkin N, Rosenblatt A, Barequet IS. Predictability of biometry in patients undergoing cataract surgery. Optom Vis Sci. 2016;93(12):1545-1551. doi:10.1097/OPX.0000000000000990
  • Huang Y, Tang X, Deng J. Comparison of biometric measurements of ALADDIN versus IOL Master 500 in cataract patients. J Clin Ophthalmol. 2015;23:21-23.
  • McAlinden C, Wang Q, Gao R, et al. Axial length measurement failure rates with biometers using swept-source optical coherence tomography compared to partial-coherence interferometry and optical low-coherence interferometry. Am J Ophthalmol. 2017;173:64-69. doi:10.1016/j.ajo.2016.09.019
  • Ortiz A, Galvis V, Tello A, et al. Comparison of three optical biometers: IOLMaster 500, Lenstar LS 900 and Aladdin. Int Ophthalmol. 2019;39(8):1809-1818. doi:10.1007/s10792-018-1006-z
  • Ceran BB, Hashas Karatepe AS, Tasindi E. Can we use anterior segment parameters of an optical biometer and a combined topography system interchangeably? Glo-Kat. 2020;15(1)):38-44. doi:10.37844/glauc.cat.2020.15.8
  • Kanclerz P, Przewłócka K, Wang X. Inter-device measurement variability of vital data parameters for keratorefractive and cataract refractive surgery. Ther Adv Ophthalmol. 2021;13. doi:10.1177/25158414211045750
  • Rosen E. The Pupil and refractive surgery. In: Kohnen T, Koch DD, eds. Cataract and refractive surgery. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. 2005;289-302. doi:10.1007/3-540-26678-X_18
  • Md-Muziman-Syah MM, Suhaimi MA, Sulaiman UH, et al. Mesopic pupillometry in pre-LASIK patients by a Placido-disc topographer and Hartmann-shack aberrometer. Mal J Med Health Sci. 2021;17(2):197-202.
  • Espinosa J, Roig AB, Pérez J, Mas D. A high-resolution binocular video-oculography system: assessment of pupillary light reflex and detection of an early incomplete blink and an upward eye movement. Biomed Eng Online. 2015;14(1):1-12. doi:10.1186/s12938-015-0016-6
  • Kiziltoprak H, Tekin K, Yetkin E, Sekeroglu MA. Static and dynamic pupil characteristics in myopic anisometropic amblyopia. Beyoglu Eye J. 2020;5(2):86-92. doi:10.14744/bej.2020.08760
There are 25 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research article
Authors

Yunus Karabela 0000-0002-2267-6656

Bülent Ayan 0000-0002-5857-0706

Publication Date June 1, 2022
Submission Date January 13, 2022
Acceptance Date March 19, 2022
Published in Issue Year 2022 Volume: 7 Issue: 2

Cite

AMA Karabela Y, Ayan B. Reproducibility of Ocular Biometry and Pupillometry with the Aladdin HW2.0 Optical Low-Coherence Interferometer. OTJHS. June 2022;7(2):278-285. doi:10.26453/otjhs.1057079

Creative Commons License

Online Türk Sağlık Bilimleri Dergisi [Online Turkish Journal of Health Sciences (OTJHS)] is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an open-access journal distributed under the terms of the Creative Commons Attribution License (CC BY-NC 4.0). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Click here to get help about article submission processes and "Copyright Transfer Form".