BibTex RIS Cite

SİMÜLASYON TEKNİĞİ İLE ELASTİK KÜTLE-YAY SALINIMINLARININ İNCELENMESİ

Year 2009, Volume: 15 Issue: 1, 81 - 86, 01.01.2009

Abstract

Bu çalışmada, elastik kütle-yay sarkaç salınımları incelenmiştir. Sistemin lineer olmayan diferansiyel denklemlerini çözmek için Dymola, SimulationX gibi Modelica dili tabanlı Simülasyon Tekniği kullanılmıştır. Sistemdeki yayın direngenliği lineer ve kütlesi ihmal edilmiştir. Bu şartlar altındaki sarkacın kinematik davranışı incelenmiştir. Sistemi ifade eden genel denklem iki tane lineer olmayan ve birbirini etkileyen diferansiyel denklemden oluşmaktadır. Bu denklemler Simülasyon Tekniği ile çözülmüştür. Elde edilen sonuçlar önceki çalışmalarla kıyaslanmış ve uyumlu olduğu görülmüştür.

References

  • Chang, C. L. and Lee, Z. Y. 2004. Applying the double side method to solution nonlinear pendulum problem, Appl. Math.Comput. 149, 613-624.
  • Fung, T. C. 2001. Solving initial value problems by differential quadrature method. part 2: second- and higher-order equations, Int. J. Numer. Meth. Eng. 50, 1429-1454.
  • Georgiou, I. T. 1999. On the global geometric structure of the dynamics of the elastic pendulum, Nonlinear Dynam. 18, 51-68.
  • Girgin, Z. 2008. Combining differential quadrature method with simulation technique to solve non- linear differential equations, Int. J. Numer. Meth. Eng. 75 (6), 722-734.
  • He, J. H. 1999. Variational iteration method – a kind of nonlinear analytical technique: some examples, Int. J. Nonlin. Mech., 34 (4), 699-708.
  • He, J. H. 2003. Homopoty perturbation method: a new nonlinear analytical technique, Appl. Math. Comput. 135 (1), 73-79.
  • Liu, G. R. and Wu, T. Y. 2000. Numerical solution for differential equations of duffing-type non- linearity
  • quadrature rule, J. Sound. Vib. 237 (5), 805-817. generalized
  • differential Lynch, P. 2002. Resonant motions of the three- dimensional elastic pendulum, Int. J. Nonlinear Mech. 37, 345-367.
  • Lynch, P. and Houghton, C. 2004. Pulsation and precession of the resonant swinging spring, Physica D, 190, 38-62.
  • Nayfeh, A. H. 1987. Nonlinear oscillations 720s. A Wiley-Interscience Publication.
  • Vetyukov, Y., Gerstmayr, H. and Irschik, H. 2004. The Comperative Analysis of the fully nonlinear, the linear elastic and the consistently linearized equations of motion of the 2d elastic pendulum, Comput. Struct. 82, 863-870.

INVESTIGATION OF ELASTIC PENDULUM OSCILLATIONS BY SIMULATION TECHNIQUE

Year 2009, Volume: 15 Issue: 1, 81 - 86, 01.01.2009

Abstract

In this study, elastic spring-mass pendulum oscillations are investigated. In order to solve a nonlinear differential equation system, Simulation Technique based on Modelica Language such as Dymola, SimulationX etc., is used. It's assumed that the spring coefficient in this system is linear and spring mass is neglected. Under these conditions, kinematic behavior of the pendulum was investigated. The governing equation of the system possessing two nonlinear differential equations which interacts each other are solved simultaneously. The obtained results are compared with previous works and seemed good agreements with others.

References

  • Chang, C. L. and Lee, Z. Y. 2004. Applying the double side method to solution nonlinear pendulum problem, Appl. Math.Comput. 149, 613-624.
  • Fung, T. C. 2001. Solving initial value problems by differential quadrature method. part 2: second- and higher-order equations, Int. J. Numer. Meth. Eng. 50, 1429-1454.
  • Georgiou, I. T. 1999. On the global geometric structure of the dynamics of the elastic pendulum, Nonlinear Dynam. 18, 51-68.
  • Girgin, Z. 2008. Combining differential quadrature method with simulation technique to solve non- linear differential equations, Int. J. Numer. Meth. Eng. 75 (6), 722-734.
  • He, J. H. 1999. Variational iteration method – a kind of nonlinear analytical technique: some examples, Int. J. Nonlin. Mech., 34 (4), 699-708.
  • He, J. H. 2003. Homopoty perturbation method: a new nonlinear analytical technique, Appl. Math. Comput. 135 (1), 73-79.
  • Liu, G. R. and Wu, T. Y. 2000. Numerical solution for differential equations of duffing-type non- linearity
  • quadrature rule, J. Sound. Vib. 237 (5), 805-817. generalized
  • differential Lynch, P. 2002. Resonant motions of the three- dimensional elastic pendulum, Int. J. Nonlinear Mech. 37, 345-367.
  • Lynch, P. and Houghton, C. 2004. Pulsation and precession of the resonant swinging spring, Physica D, 190, 38-62.
  • Nayfeh, A. H. 1987. Nonlinear oscillations 720s. A Wiley-Interscience Publication.
  • Vetyukov, Y., Gerstmayr, H. and Irschik, H. 2004. The Comperative Analysis of the fully nonlinear, the linear elastic and the consistently linearized equations of motion of the 2d elastic pendulum, Comput. Struct. 82, 863-870.
There are 12 citations in total.

Details

Primary Language Turkish
Authors

Zekeriya Girgin This is me

Ersin Demir This is me

Publication Date January 1, 2009
Published in Issue Year 2009 Volume: 15 Issue: 1

Cite

APA Girgin, Z., & Demir, E. (2009). SİMÜLASYON TEKNİĞİ İLE ELASTİK KÜTLE-YAY SALINIMINLARININ İNCELENMESİ. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 15(1), 81-86.
AMA Girgin Z, Demir E. SİMÜLASYON TEKNİĞİ İLE ELASTİK KÜTLE-YAY SALINIMINLARININ İNCELENMESİ. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. January 2009;15(1):81-86.
Chicago Girgin, Zekeriya, and Ersin Demir. “SİMÜLASYON TEKNİĞİ İLE ELASTİK KÜTLE-YAY SALINIMINLARININ İNCELENMESİ”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 15, no. 1 (January 2009): 81-86.
EndNote Girgin Z, Demir E (January 1, 2009) SİMÜLASYON TEKNİĞİ İLE ELASTİK KÜTLE-YAY SALINIMINLARININ İNCELENMESİ. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 15 1 81–86.
IEEE Z. Girgin and E. Demir, “SİMÜLASYON TEKNİĞİ İLE ELASTİK KÜTLE-YAY SALINIMINLARININ İNCELENMESİ”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 15, no. 1, pp. 81–86, 2009.
ISNAD Girgin, Zekeriya - Demir, Ersin. “SİMÜLASYON TEKNİĞİ İLE ELASTİK KÜTLE-YAY SALINIMINLARININ İNCELENMESİ”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 15/1 (January2009), 81-86.
JAMA Girgin Z, Demir E. SİMÜLASYON TEKNİĞİ İLE ELASTİK KÜTLE-YAY SALINIMINLARININ İNCELENMESİ. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2009;15:81–86.
MLA Girgin, Zekeriya and Ersin Demir. “SİMÜLASYON TEKNİĞİ İLE ELASTİK KÜTLE-YAY SALINIMINLARININ İNCELENMESİ”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 15, no. 1, 2009, pp. 81-86.
Vancouver Girgin Z, Demir E. SİMÜLASYON TEKNİĞİ İLE ELASTİK KÜTLE-YAY SALINIMINLARININ İNCELENMESİ. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2009;15(1):81-6.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif