Research Article
BibTex RIS Cite

Turnuva seçim operatörü kullanan bir havai fişek algoritması

Year 2017, Volume: 23 Issue: 5, 628 - 636, 20.10.2017

Abstract

Son on
yılda doğa olaylarından esinlenerek çeşitli sürü zekasına dayalı optimizasyon
teknikleri geliştirilmiştir. Kabul edilebilir bir sürede optimuma yakın
çözümler üretebilen bu teknikler, fen ve sosyal bilimlerdeki birçok problemin
çözümünde başarıyla uygulanmıştır.  Havai
Fişek Algoritması (HFA), havai fişeklerin patlamalarından esinlenilmiş yeni bir
sürü zekası algoritmasıdır. Oldukça yeni sayılabilecek bu teknik, çok çeşitli
problemlerde başarılı bir şekilde kullanılmış ve özellikle parçacık sürü optimizasyonu,
karınca koloni ve genetik algoritma gibi tekniklere göre daha iyi sonuçlar elde
edilmiştir. Elde edilen başarılı sonuçlara rağmen, HFA optimum çözüme ulaşmak
için uzun zamana ihtiyaç duymaktadır. Bu hesaplama zamanı yetersizliğini
giderebilmek amacıyla bu çalışmada turnuva seçimi kullanan bir HFA
önerilmiştir. Turnuva seçme operatörüne sahip HFA’nın başarımı 15 adet nümerik
optimizasyon probleminde test edilmiştir. Deneysel sonuçlar önerilen HFA’nın
klasik HFA’ya göre hesaplama zamanı ve çözüm kalitesinde önemli performans
iyileşmeleri sağladığını göstermiştir.

References

  • Merkle D, Middendorf M. “Swarm intelligence and signal processing”. IEEE Signal Processing Magazine, 25(6), 152-158, 2008.
  • Karaboğa D. “Yapay Zeka Optimizasyon Algoritmaları”. 3. Baskı. Ankara, Türkiye, Nobel Akademik Yayıncılık, 2014.
  • Akdagli A, Guney K, Karaboga D, Babayigit B. “Finding failed element positions in linear antenna arrays using genetic algorithm”. 3rd International Conference on Electrical and Electronics Engineering, Bursa, Turkey, 3-7 December, 2003.
  • Chen Y, An A. “Application of ant colony algorithm to geochemical anomaly detection”. Journal of Geochemical Exploration, 164, 75-85, 2016.
  • Gao S, Wang Y, Cheng J, Inazumi Y, Tang Z. “Ant colony optimization with clustering for solving the dynamic location routing problem”. Applied Mathematics and Computation, 285, 149-173, 2016.
  • Kerdphol T, Fuji K, Mitani Y, Watanabe M, Qudaih Y. “Optimization of a battery energy storage system using particle swarm optimization for stand-alone microgrids”. International Journal of Electrical Power & Energy Systems, 81, 32-39, 2016.
  • Chuang LY, Moi SH, Lin Y-D, Yang CH. “A comparative analysis of chaotic particle swarm optimizations for detecting single nucleotide polymorphism barcodes”. Artificial Intelligence in Medicine, 73, 23-33, 2016.
  • Gong M, Yan J, Shen B, Ma L, Cai Q. “Influence maximization in social networks based on discrete particle swarm optimization”. Information Sciences, 367-368, 600-614, 2016.
  • Babayigit B, Akdagli A, Guney K. “A clonal selection algorithm for null synthesizing of linear antenna array by amplitude control”. Journal of Electromagnetic Waves and Applications, 20(8), 1007-1020, 2006.
  • Akdagli A, Guney K, Babayigit B. “Clonal selection algorithm for design of reconfigurable antenna array with discrete phase shifters”. Journal of Electromagnetic Waves and Applications, 21(2), 215-227, 2007.
  • Souza SSF, Romero R, Pereira J, Saraiva JT. “Artificial immune algorithm applied to distribution system reconfiguration with variable demand”. International Journal of Electrical Power & Energy Systems, 82, 561-568, 2016.
  • Tavana M, Kazemi MR, Vafadarnikjjoo A, Mobin M. “An artificial immune algorithm for ergonomic product classification using anthropometric measurements”. Measurement, 94, 621-629, 2016.
  • Hong PN, Ahn CW. “Linkage artificial bee colony for solving linkage problems”. Expert Systems with Applications, 61, 378-385, 2016.
  • Li B, Zhou C, Liu H, Li Y, Cao H. “Image retrieval via balance-evolution artificial bee colony algorithm and lateral inhibition”. Optik-International Journal for Light and Electron Optics, 127(24), 11775-11785, 2016.
  • Shah-Hosseini H. “The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm”. International Journal of Bio-Inspired Computation, 1(1), 71-79, 2009.
  • Shi Y. “Brain storm optimization algorithm”. Advances in Swarm Intelligence, 6728, 303-309, 2011.
  • Tayarani NMH, Akbarzadeh TMR. “Magnetic optimization algorithms a new synthesis”. IEEE World Congress on Computational Intelligence Evolutionary Computation (CEC), Hong Kong, China, 1-6 June 2008.
  • Tan Y, Zhu A. “Fireworks algorithm for optimization”. Advances in Swarm Intelligence, 6145, 355-364, 2010.
  • Tan Y. Fireworks Algorithm A Novel Swarm Intelligence Optimization Method. 1st ed. New York, USA, Springer, 2015.
  • Tukey JW. Exploratory Data Analysis. Boston, MA, USA, Addison-Wesley, 1977.

A fireworks algorithm using tournament selection operator

Year 2017, Volume: 23 Issue: 5, 628 - 636, 20.10.2017

Abstract

In
recent decade, several nature-inspired swarm intelligence-based optimization
techniques have been improved. These techniques, which give solutions close to
optimum in an acceptable time, have been applied successfully to solve the
problems in science and social sciences. Fireworks Algorithm (FA), inspired by
observing fireworks explosion, is a new swarm intelligence algorithm. This
relatively new technique has been utilized to tackle diverse problems and
obtained better performance than other popular techniques such as particle
swarm optimization, ant colony, and genetic algorithm. Despite the good results
obtained, FA requires long computation time to achieve the optimum solution. To
eliminate long computation time drawback of FA, in this study, a FA using
tournament selection is proposed. The performance of the proposed FA, which
involves tournament selection operator, is tested on well-known 15 numerical
optimization problems. Experimental results reveal that proposed FA has a
significant performance improvement in term of computation time and solution
quality in comparison with original FA.

References

  • Merkle D, Middendorf M. “Swarm intelligence and signal processing”. IEEE Signal Processing Magazine, 25(6), 152-158, 2008.
  • Karaboğa D. “Yapay Zeka Optimizasyon Algoritmaları”. 3. Baskı. Ankara, Türkiye, Nobel Akademik Yayıncılık, 2014.
  • Akdagli A, Guney K, Karaboga D, Babayigit B. “Finding failed element positions in linear antenna arrays using genetic algorithm”. 3rd International Conference on Electrical and Electronics Engineering, Bursa, Turkey, 3-7 December, 2003.
  • Chen Y, An A. “Application of ant colony algorithm to geochemical anomaly detection”. Journal of Geochemical Exploration, 164, 75-85, 2016.
  • Gao S, Wang Y, Cheng J, Inazumi Y, Tang Z. “Ant colony optimization with clustering for solving the dynamic location routing problem”. Applied Mathematics and Computation, 285, 149-173, 2016.
  • Kerdphol T, Fuji K, Mitani Y, Watanabe M, Qudaih Y. “Optimization of a battery energy storage system using particle swarm optimization for stand-alone microgrids”. International Journal of Electrical Power & Energy Systems, 81, 32-39, 2016.
  • Chuang LY, Moi SH, Lin Y-D, Yang CH. “A comparative analysis of chaotic particle swarm optimizations for detecting single nucleotide polymorphism barcodes”. Artificial Intelligence in Medicine, 73, 23-33, 2016.
  • Gong M, Yan J, Shen B, Ma L, Cai Q. “Influence maximization in social networks based on discrete particle swarm optimization”. Information Sciences, 367-368, 600-614, 2016.
  • Babayigit B, Akdagli A, Guney K. “A clonal selection algorithm for null synthesizing of linear antenna array by amplitude control”. Journal of Electromagnetic Waves and Applications, 20(8), 1007-1020, 2006.
  • Akdagli A, Guney K, Babayigit B. “Clonal selection algorithm for design of reconfigurable antenna array with discrete phase shifters”. Journal of Electromagnetic Waves and Applications, 21(2), 215-227, 2007.
  • Souza SSF, Romero R, Pereira J, Saraiva JT. “Artificial immune algorithm applied to distribution system reconfiguration with variable demand”. International Journal of Electrical Power & Energy Systems, 82, 561-568, 2016.
  • Tavana M, Kazemi MR, Vafadarnikjjoo A, Mobin M. “An artificial immune algorithm for ergonomic product classification using anthropometric measurements”. Measurement, 94, 621-629, 2016.
  • Hong PN, Ahn CW. “Linkage artificial bee colony for solving linkage problems”. Expert Systems with Applications, 61, 378-385, 2016.
  • Li B, Zhou C, Liu H, Li Y, Cao H. “Image retrieval via balance-evolution artificial bee colony algorithm and lateral inhibition”. Optik-International Journal for Light and Electron Optics, 127(24), 11775-11785, 2016.
  • Shah-Hosseini H. “The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm”. International Journal of Bio-Inspired Computation, 1(1), 71-79, 2009.
  • Shi Y. “Brain storm optimization algorithm”. Advances in Swarm Intelligence, 6728, 303-309, 2011.
  • Tayarani NMH, Akbarzadeh TMR. “Magnetic optimization algorithms a new synthesis”. IEEE World Congress on Computational Intelligence Evolutionary Computation (CEC), Hong Kong, China, 1-6 June 2008.
  • Tan Y, Zhu A. “Fireworks algorithm for optimization”. Advances in Swarm Intelligence, 6145, 355-364, 2010.
  • Tan Y. Fireworks Algorithm A Novel Swarm Intelligence Optimization Method. 1st ed. New York, USA, Springer, 2015.
  • Tukey JW. Exploratory Data Analysis. Boston, MA, USA, Addison-Wesley, 1977.
There are 20 citations in total.

Details

Subjects Engineering
Journal Section Research Article
Authors

Bilal Babayiğit

Sema Haspaylan This is me

Publication Date October 20, 2017
Published in Issue Year 2017 Volume: 23 Issue: 5

Cite

APA Babayiğit, B., & Haspaylan, S. (2017). Turnuva seçim operatörü kullanan bir havai fişek algoritması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(5), 628-636.
AMA Babayiğit B, Haspaylan S. Turnuva seçim operatörü kullanan bir havai fişek algoritması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. October 2017;23(5):628-636.
Chicago Babayiğit, Bilal, and Sema Haspaylan. “Turnuva Seçim Operatörü Kullanan Bir Havai Fişek Algoritması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23, no. 5 (October 2017): 628-36.
EndNote Babayiğit B, Haspaylan S (October 1, 2017) Turnuva seçim operatörü kullanan bir havai fişek algoritması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23 5 628–636.
IEEE B. Babayiğit and S. Haspaylan, “Turnuva seçim operatörü kullanan bir havai fişek algoritması”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 23, no. 5, pp. 628–636, 2017.
ISNAD Babayiğit, Bilal - Haspaylan, Sema. “Turnuva Seçim Operatörü Kullanan Bir Havai Fişek Algoritması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23/5 (October2017), 628-636.
JAMA Babayiğit B, Haspaylan S. Turnuva seçim operatörü kullanan bir havai fişek algoritması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2017;23:628–636.
MLA Babayiğit, Bilal and Sema Haspaylan. “Turnuva Seçim Operatörü Kullanan Bir Havai Fişek Algoritması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 23, no. 5, 2017, pp. 628-36.
Vancouver Babayiğit B, Haspaylan S. Turnuva seçim operatörü kullanan bir havai fişek algoritması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2017;23(5):628-36.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif