BibTex RIS Cite

Experiment Which is Done in Rubber Mechanics

Year 2013, Volume: 19 Issue: 1, 33 - 60, 01.01.2013

Abstract

To describe the elastic behavior of rubber-like materials numerous specific forms of strain energy functions have been proposed in the literature. Theoretically proposed these strain energy functions are checked by the tension, compression, shear and torsion experiments data. This paper describe and clasify of experiments which is done in rubber mechanics. Meanwhile, experiments of rubber-like materials in literature are reviewed.

References

  • Vahapoğlu, V. and Karadeniz, S., Constitutive Equations Rubber-Like Phenomenological Approach: A Bibliography (1930- 2003), Rubber Chemistry and Technology, 78 (3) 489-499, 2006a. Materials Using
  • Vahapoğlu, V., Kauçuk Türü Malzemelerin İnelastik Özelliklerinin Deneysel Olarak İncelenmesi, Doktora Tezi, Fen Bilimleri Enstitüsü, KTÜ, 2006b.
  • Gough, J., A Description of a Property of Caoutchouc, or Indian Rubber; with some Reflections on the Cause of the Elasticity of This Substance, Mem. Lit. Phil. Soc. Manchester, 1, 288-295, 1805.
  • Joule, J.P., On Some Thermo-Dynamic Properties and Solids, Philosophical Transactions of the Royal Society of London Series A-Mathematical and Physical Sciences, 149, 91-131, 1859.
  • ASTM D 412, Standard Test Method for Vulcanized Rubber and Thermoplastic Rubbers and Thermoplastic Elastomer-Tension, ASTM, Philadelphia, 1992. [6] DIN 53 504, Bestimmung von ReiBfestigkeit,
  • Zugfestigkeit, ReiBdehnung und Spannungswerten im Zugversuch.
  • ISO 37:205, Rubber, Vulcanized or Thermoplastic. Determination of Tensile Stress-Strain Properties, International Organization for Standardization, Geneva, 2005.
  • Anonim, Nonlinear Finite Element Analysis of Elastomers, MSC Software Corporation, LosAngeles, CA, 2002.
  • Treloar, L.R.G., Strees-Strain Data for Vulcanized Rubber Under Various Types of Deformation, Transaction of Faraday Society, 40, 59-69, 1944a.
  • Vahapoğlu, V., Karadeniz, S. and Yazıcı, İ., Uniaxial Test of Rubber-Like Materials, Experimental Techniques, 35 (1) 17-23, 2011.
  • Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, Dover Publications, Fourth Edition, New York,
  • Rivlin, R.S. and Saunders, D.W., Large Elastic Deformations of Isotropic Materials VII: Experiments on the Deformation of Rubber, Philosophical Transactions of the Royal Society of London-Series A: Mathematical and Physical Sciences, 243, 251-288, 1951.
  • Chen, T.L., and Durelli, A.J., Stress Field in a Sphere Subjected to Large Deformations, International Journal of Solids and Structures, 9, 1035-1052, 1973.
  • Haines, D.W. and Wilson, W.D., Strain-Energy Density Function for Rubber Like Materials, Journal of the Mechanical Physical of Solids, 27, 345-360, 1979.
  • Sullivan, J.L. and Demery, V.C., The Nonlinear Viscoelastic Behaviour of a Carbon-Black-Filled Elastomer, Journal of Polymer Science: Polymer Physics Edition, 10, 2083-2101, 1982.
  • Raos, P., Modelling of Elastic Behaviour of Rubber and its Application in FEA, Plastics, Rubber and Composites Processing and Applications, 19, 293-303, 1993.
  • Gregory, M.J., Measurement of Rubber Properties for Design, Polymer Testing, 4, 211-223, 1984.
  • Davies, C.K.L., Dilip, K. De, and Thomas, A.G., Characterization of the Behaviour of Rubber for Engineering Design Purposes. 1 Stress-Strain Relations, Rubber Chemistry and Technology, 67 (4), 716-728, 1994.
  • Baranwall, K., Pannikottu, A. and Seiler, J.A., Various Testing Technique Aid Development of Useful Constants, ITEC, 1996.
  • Ariano, R., Rubber Stretched by Forces in Two Directions Perpendicular to One Another, Rubber Chemistry and Technology, 13, 92-102, 1940.
  • Treloar L.R.G., Stresses and Birefrigence in Rubber Subjected to General Homogeneous Strain, Proceeding of Physics of Society, 60 (2), 135-144, 1947.
  • Rivlin, R.S., Large Elastic Deformations of Isotropic Materials I: Fundamental Concepts, Philosophical Transactions of the Royal Society of London-Series A: Mathematical and Physical Sciences, 240, 455-490, 1948a.
  • Rivlin, R.S., Large Elastic Deformations of Isotropic Materials II: Some Uniqueness Theorems for Pure Homogeneous Deformation, Philosophical Transactions of the Royal Society of London-Series A: Mathematical and Physical Sciences, 240, 490-508, 1948b.
  • Rivlin, R.S., Large Elastic Deformations of Isotropic Materials III: Some Simple Problems in Cylindrical Polar Co-ordinates, Philosophical Transactions of the Royal Society of London Series A: Mathematical and Physical Sciences, 240, 509-525, 1948c.
  • Rivlin, R.S., Large Elastic Deformations of Isotropic Materials IV: Further Developments of the General Theory, Philosophical Transactions of the Royal Society of London-Series A: Mathematical and Physical Sciences, 241, 379-397, 1948d.
  • Rivlin, R.S., Large Elastic Deformations of Isotropic Materials V: The Problem of Flexure, Proceeding of the Royal Society of London-Series A, 195, 463-473, 1949a.
  • Rivlin, R.S., Large Elastic Deformations of Isotropic Materials VI: Further Results in the Theory of Torsion and Flexure, Philosophical Transactions of the Royal Society of London-Series A: Mathematical and Physical Sciences, 242, 173-195 1949b.
  • Rivlin, R.S. and Thomas, A.G., Large Elastic Deformations of Isotropic Materials III: Strain Distribution Around a Hole in a Sheet, Philosophical Transactions of the Royal Society of London-Series A: Mathematical and Physical Sciences, 243, 289-298, 1951.
  • Adkins, J.E., and Rivlin, R.S., Large Elastic Deformation of Isotropic Materials IX. The Deformation of Thin Shells, Royal Society of London. Philosophical Transactions. Series A. Mathematical Physical, 244, 505-531, 1951/52.
  • Becker, G.W., On the Phenomenological Description of the Nonlinear Deformation Behaviour of Rubberlike High Polymers, Journal of Polymer Science: Part C, 16, 2893-2903, 1967.
  • Arenz, R.J., Landel, R.F. and Tsuge, K., Miniature Load-Cell Instrumentation for Finite Deformation Biaxial Testing of Elastomers, Experimental Mechanics, 15, 114-120, 1975.
  • Zapas, J.L., Viscoelastic Behaviour Under Large Deformations, Journal of Research of the National Bureau of Standarts-A. Physics and Chemistry, 70A, (6), 525-532, 1966.
  • Klosner, J.M. and Segal, A., Mechanical Characterization of a Natural Rubber, Polytechnic Institute of Brooklyn, Department of Aerospace Engineering and Applied Mechanics, PIBAL REPORT NO. 69-42, October, 1969.
  • Obata, Y., Kawabata, S. and Kawai, H., Mechanical Properties of Natural Rubber Vulcanizates in Finite Deformations, Journal of Polymer Science : Part A-2, 8, 903-919, 1970.
  • Kawabata, S. and Kawai, H., Strain Energy Density Functions of Rubber Vulcanizates From Biaxial Extension, Advances in Polymer Science, 24, 89-124, 1970.
  • Kawabata, S., Fracture and Mechanical Behaviour of Rubber-Like Polymer Under Finite Deformation in Biaxial Stress Field, Journal of Macromolecule Science-Physics, B8, 605-630, 1973.
  • Kawabata, S., Biaxial Testing of Elastomers, Proceeding of the 1973 Symposioum on Mechanical Behaviour of Materials, August, Kyoto, Japan, 299-308, 1974.
  • Kawabata, S., Matsuda, M., Tei, K. and Kawai, H., Experimental Survey of the Strain Energy Density Function Macromolecules, 14, 154-162, 1981. Rubber Vulcanizate,
  • Matsuda, M., Kawabata, S. and Kawai, H., Quantitative Analysis of the Strain Energy Density Function for cis-1,4- Polyisoprene Rubber Vulcanizate, Macromolecules, 14, 1688-1692, 1981.
  • San Miguel, A., An Automated Biaxial Sheet Tester, Experimental Mechanics, 12 (3), 155-157, 1972.
  • Durelli, A.J. and Parks, V.J., Natural Stress, International Journal of Non-Linear Mechanics, 4, 7-16, 1969.
  • James, A.G., Green, A. and Simpson, G.M., Strain Energy Functions of Rubber I: Characterization of Gum Vulcanizates, Journal of Applied Polymer Science, 19, 2033-2058, 1975.
  • James, A.G. and Green, A., Strain Energy Functions of Rubber II: Characterizations of Filled Vulcanizates, Journal of Applied Polymer Science, 19, 2319-2330, 1975.
  • Jones, D.F. and Treloar, L.R.G., The Properties of Rubber in Pure Homogeneous Strain, Journal of Physics, D: Applied Physics, 8, 1285-1304, 1975.
  • Chow, C.L. and Cundiff, C.H., On the Characterization of Mechanical Properties of Rubber Vulcanizates, Tire Science and Technology, 15 (2), 73-96, 1987.
  • Ortt, E.M., Doss, D.J., Legall, E., Wright, N.T., ve Humphrey, J.D., A Device for Evaluating the Multiaxial Finite Strain Thermomechanical Behaviour of Elastomers and Soft Tissues, Journal of Applied Mechanics, 67 (3), 465-471,
  • Boonstra, B.B.S.T., Stress-Strain Properties of Natural Rubber Under Biaxial Strain, Journal of Applied Physics, 21, 1098-1104, 1950.
  • Treloar, L.R.G., Strains in an Inflated Rubber Sheet and the Mechanism of Bursting, Rubber Chemistry and Technology, 17, 957-967, 1944b.
  • Hoppmann, W.H. and Wan, L., Large Deformation of Elastic Tubes, Journal of Biomechanics, 3, 593-600, 1970.
  • Alexander, H., Tensile Instability of Inıtially Spherical Balloons, International Journal of Engineering Science, 9, 151-162, 1971a.
  • Alexander, H., The Tensile Instability of an Inflated Cylindrical Membrane as Effected by an Axial Load, International Journal of Mechanical Science, 13, 87-95, 1971b.
  • Alexander, H., Constitutive Relation for Rubber-Like Materials, International Journal of Engineering Science, 6, 549-563, 1968.
  • Vangerko, H. and Treloar, L.R.G., The Inflation of Rubber Tube for Biaxial Strain Studies, Journal of Physics D: Applied Physics, 11, 1969-1978, 1978.
  • Anonim, Comression or Biaxial Extension?, Axel Products Testing and Analysis Report, Ann Arbor, Michigan, 2000.
  • Blatz,P.J. and Ko, W.L., Application of Finite Elastic Theory to the Deformation of Rubbery Materials, Transactions of the Faraday Society, 6, 223-251, 1962.
  • Blatz, P.J., Application of Finite Elastic Theory to the Behaviour of Rubberlike Materials, Rubber Chemistry and Technology, 36, 1459-1496, 1963.
  • McGuirt, C.W. and Lianis, G., Constitutive Equations for Viscoelastic Solids Under Finite Uniaxial and Biaxial Deformations, Transactions of the Society of Rheolgy, 14 (2), 117-134, 1970.
  • Vahapoğlu, V., Kauçuk Türü Malzemelerin Malzeme Sabitlerinin Eş-İki Eksenli Çekme Deneyi ile Belirlenmesi, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, KTÜ, 1998.
  • Day, J. and Miller, K., Equibiaxial Streching of Elastomeric Sheets, An Analytical Verification of Experimental Technique, ABAQUS 2000 User's Conference Proceeding, Newsport, Rhole Island, May 30 - June 2, 205-220, 2000.
  • Flint, C.F. and Naunton, J.S., Physical Testing of Latex Films, Rubber Chemistry and Technology, 10, 584-614, 1937.
  • Dickie, R.A. and Smith, T.L., Ultimate Tensile Properties of Elastomers. VI. Strenght and Extensibility of a Styrene- Butadiene Rubber Vulcanizate in Equal Biaxial Tension, Journal of Polymer Science: Part A-2: Polymer Physics Edition, 7, 687-707, 1969.
  • Merritt, D.R. and Weinhaus, F., The Pressure Curve for a Rubber Balloon, American Journal of Physics, 46 (10), 976-977, 1978.
  • James, H.M. and Guth, E., Theory of Elastic Properties of Rubber, The Journal of Chemical Physics, 11 (10), 455-481, 1943.
  • Johnson, M.A. and Beatty, M.F., The Mullins Effect in Equibiaxial Extension and its Influence on the Inflation of a Balloon, International Journal of Engineering Science, 33 (2), 223-245, 1945.
  • Johannknecht, R. and Jerrams, S.J., The Need for Equi- Biaxial Testing to Determine Elastomeric Material Properties, Proceeding of the First European Conference on Constitutive Models for Rubber, Vienna, Austria, 9-10 September, Ed. Dorfman A., and Muhr, A. 73-76, 1999.
  • Fukahari, Y. and Seki, S., Molecular Behaviour of Elastomeric Materials Under Large Deformation-I: Re-Evaluation of the Mooney-Rivlin Plot, Polymer, 33 (3), 502-508, 1999.
  • Takigawa, T., Yamasaki, S., Urayama, K., Takahashi, M., and Masuda, T., Stress-Strain Behaviour of Segmented Polyurethaneureas Under Pure Shear Deformation, Rheologica Acta, 35, 288-295, 1996.
  • Mooney, M., A Theory of Large Elastic Deformation, Journal of Applied Physics, 11, 582-592, 1940.
  • Mooney, M., Stress-Strain Curves of Rubbers in Simple Shear, Journal of Applied Physics, 35, 23-26, 1964.
  • Smith, T.L., and Frederick, J.E., Viscoelastic Properties of a Styrene-Butadiene Vulcanizate in Large Biaxial and Simple Tensile Deformations, Transactions of the Society of Rheology, 12 (3), 363-396, 1968.
  • ASTM D 575, Standard Test Methods for Rubber Properties in Compression, ASTM, Philadelphia, 1991.
  • Forster, M.J., Unilateral Compression of Rubber, Journal of Applied Physics, 26 (9), 1104-1106, 1955.
  • Lindley, P.B., Load-Compression Relationships of Rubber Units, Journal of Strain Analysis, 1 (3), 190-195, 1966.
  • McKenna, G.B., and Zapas, L.J., Experiments on the Small- Strain Behaviour of Crosslinked Natural Rubber: 2. Extension and Compression, Polymer, 24 (11), 1495-1501, 1983.
  • Yeoh, O.H., A Method for the Routine Determination of Compression Modulus of Rubber Vulcanizates, Polymer Testing, 7, 121-136, 1987.
  • Yeoh, O.H., Characterization of Elastic Properties of Carbon-Black Filled Rubber Vulcanizates, Rubber Chemistry and Technology, 63 (5), 792-805, 1990.
  • Arruda, E.M., and Boyce, M.C., A Three-Dimensional Constitutive Model for the Large Strecth Behaviour of Rubber Elastic Materials, Journal of the Mechanics and Physics of Solids, 41 (2), 389-412, 1993.
  • Gough, J., Muhr, A.H., and Thomas, A.G., Material Characterization for Finite Element Analysis of Rubber Components, Journal of Rubber Research, 1 (4), 222-239, 1998.
  • Noparatanakailas, V., Vulcanized Rubber Characterization for Finite Element Analysis, Journal od Rubber Reserach, 3 (4), 222-231, 2000.
  • Rivlin, R.S., Large Elastic Deformation, in Rheology: Theory and Applications, Ed.: Eirich, F.R., Volume-I, Chapter-10, Academic Press, Newyork, 1956, 351-385.
  • Gent, A.N., Engineering with Rubber, Hanser Publishers, Munich, 1992.
  • ASTM D 945, Standart Test Methods for Rubber Properties in Compression or Shear (Mechanical Oscillograph), ASTM, Philadelphia, 1992.
  • Eckert, G., Pechhold, W. and Schmid, M., On the Interrelation of Rubber Elastic Stress-Strain Curves Under Different Types of Strain, Polymer Engineering and Science, 32 (17), 1213-1216, 1992.
  • ISO 1827-2007, Rubber, Vulcanized or Thermoplastic- Determination of Shear Modulus and Adhesion to Rigid Plates-Quadruple-Shear Organization for Standardization, Geneva, 2007. Methods, International
  • BS 903: Part A14: 1970, Methods of Testing Vulcanized Rubber. Determination of Modulus in Shear of Rubber (Bonded Quadruple Shear Test Piece), British Standards Institution, 1970.
  • Van den Bogert, P.A.J. and Borst, R. de, On the Behaviour of Rubberlike Materials in Compression and Shear, Archieve of Applied Mechanics, 64, 136-146, 1994.

Kauçuk Mekaniğinde Yapılan Deneyler

Year 2013, Volume: 19 Issue: 1, 33 - 60, 01.01.2013

Abstract

Literatürde, kauçuk türü malzemelerin elastik davranışını modelleyebilmek için bir çok farklı formda şekil değiştirme enerji fonksiyonları önerilmiştir. Teorik olarak önerilen bu şekil değiştirme enerji fonksiyonlarının doğruluğu ise çekme, basma ve kayma deneyleri ile kontrol edilmektedir. Hazırlanan bu çalışmada kauçuk mekaniğinde yapılan deneyler tanımlanmış ve sınıflandırılmıştır. Ayrıca, çalışmada literatürde kauçuk türü malzemeler için yapılan deneysel çalışmalar incelenmiştir.

References

  • Vahapoğlu, V. and Karadeniz, S., Constitutive Equations Rubber-Like Phenomenological Approach: A Bibliography (1930- 2003), Rubber Chemistry and Technology, 78 (3) 489-499, 2006a. Materials Using
  • Vahapoğlu, V., Kauçuk Türü Malzemelerin İnelastik Özelliklerinin Deneysel Olarak İncelenmesi, Doktora Tezi, Fen Bilimleri Enstitüsü, KTÜ, 2006b.
  • Gough, J., A Description of a Property of Caoutchouc, or Indian Rubber; with some Reflections on the Cause of the Elasticity of This Substance, Mem. Lit. Phil. Soc. Manchester, 1, 288-295, 1805.
  • Joule, J.P., On Some Thermo-Dynamic Properties and Solids, Philosophical Transactions of the Royal Society of London Series A-Mathematical and Physical Sciences, 149, 91-131, 1859.
  • ASTM D 412, Standard Test Method for Vulcanized Rubber and Thermoplastic Rubbers and Thermoplastic Elastomer-Tension, ASTM, Philadelphia, 1992. [6] DIN 53 504, Bestimmung von ReiBfestigkeit,
  • Zugfestigkeit, ReiBdehnung und Spannungswerten im Zugversuch.
  • ISO 37:205, Rubber, Vulcanized or Thermoplastic. Determination of Tensile Stress-Strain Properties, International Organization for Standardization, Geneva, 2005.
  • Anonim, Nonlinear Finite Element Analysis of Elastomers, MSC Software Corporation, LosAngeles, CA, 2002.
  • Treloar, L.R.G., Strees-Strain Data for Vulcanized Rubber Under Various Types of Deformation, Transaction of Faraday Society, 40, 59-69, 1944a.
  • Vahapoğlu, V., Karadeniz, S. and Yazıcı, İ., Uniaxial Test of Rubber-Like Materials, Experimental Techniques, 35 (1) 17-23, 2011.
  • Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, Dover Publications, Fourth Edition, New York,
  • Rivlin, R.S. and Saunders, D.W., Large Elastic Deformations of Isotropic Materials VII: Experiments on the Deformation of Rubber, Philosophical Transactions of the Royal Society of London-Series A: Mathematical and Physical Sciences, 243, 251-288, 1951.
  • Chen, T.L., and Durelli, A.J., Stress Field in a Sphere Subjected to Large Deformations, International Journal of Solids and Structures, 9, 1035-1052, 1973.
  • Haines, D.W. and Wilson, W.D., Strain-Energy Density Function for Rubber Like Materials, Journal of the Mechanical Physical of Solids, 27, 345-360, 1979.
  • Sullivan, J.L. and Demery, V.C., The Nonlinear Viscoelastic Behaviour of a Carbon-Black-Filled Elastomer, Journal of Polymer Science: Polymer Physics Edition, 10, 2083-2101, 1982.
  • Raos, P., Modelling of Elastic Behaviour of Rubber and its Application in FEA, Plastics, Rubber and Composites Processing and Applications, 19, 293-303, 1993.
  • Gregory, M.J., Measurement of Rubber Properties for Design, Polymer Testing, 4, 211-223, 1984.
  • Davies, C.K.L., Dilip, K. De, and Thomas, A.G., Characterization of the Behaviour of Rubber for Engineering Design Purposes. 1 Stress-Strain Relations, Rubber Chemistry and Technology, 67 (4), 716-728, 1994.
  • Baranwall, K., Pannikottu, A. and Seiler, J.A., Various Testing Technique Aid Development of Useful Constants, ITEC, 1996.
  • Ariano, R., Rubber Stretched by Forces in Two Directions Perpendicular to One Another, Rubber Chemistry and Technology, 13, 92-102, 1940.
  • Treloar L.R.G., Stresses and Birefrigence in Rubber Subjected to General Homogeneous Strain, Proceeding of Physics of Society, 60 (2), 135-144, 1947.
  • Rivlin, R.S., Large Elastic Deformations of Isotropic Materials I: Fundamental Concepts, Philosophical Transactions of the Royal Society of London-Series A: Mathematical and Physical Sciences, 240, 455-490, 1948a.
  • Rivlin, R.S., Large Elastic Deformations of Isotropic Materials II: Some Uniqueness Theorems for Pure Homogeneous Deformation, Philosophical Transactions of the Royal Society of London-Series A: Mathematical and Physical Sciences, 240, 490-508, 1948b.
  • Rivlin, R.S., Large Elastic Deformations of Isotropic Materials III: Some Simple Problems in Cylindrical Polar Co-ordinates, Philosophical Transactions of the Royal Society of London Series A: Mathematical and Physical Sciences, 240, 509-525, 1948c.
  • Rivlin, R.S., Large Elastic Deformations of Isotropic Materials IV: Further Developments of the General Theory, Philosophical Transactions of the Royal Society of London-Series A: Mathematical and Physical Sciences, 241, 379-397, 1948d.
  • Rivlin, R.S., Large Elastic Deformations of Isotropic Materials V: The Problem of Flexure, Proceeding of the Royal Society of London-Series A, 195, 463-473, 1949a.
  • Rivlin, R.S., Large Elastic Deformations of Isotropic Materials VI: Further Results in the Theory of Torsion and Flexure, Philosophical Transactions of the Royal Society of London-Series A: Mathematical and Physical Sciences, 242, 173-195 1949b.
  • Rivlin, R.S. and Thomas, A.G., Large Elastic Deformations of Isotropic Materials III: Strain Distribution Around a Hole in a Sheet, Philosophical Transactions of the Royal Society of London-Series A: Mathematical and Physical Sciences, 243, 289-298, 1951.
  • Adkins, J.E., and Rivlin, R.S., Large Elastic Deformation of Isotropic Materials IX. The Deformation of Thin Shells, Royal Society of London. Philosophical Transactions. Series A. Mathematical Physical, 244, 505-531, 1951/52.
  • Becker, G.W., On the Phenomenological Description of the Nonlinear Deformation Behaviour of Rubberlike High Polymers, Journal of Polymer Science: Part C, 16, 2893-2903, 1967.
  • Arenz, R.J., Landel, R.F. and Tsuge, K., Miniature Load-Cell Instrumentation for Finite Deformation Biaxial Testing of Elastomers, Experimental Mechanics, 15, 114-120, 1975.
  • Zapas, J.L., Viscoelastic Behaviour Under Large Deformations, Journal of Research of the National Bureau of Standarts-A. Physics and Chemistry, 70A, (6), 525-532, 1966.
  • Klosner, J.M. and Segal, A., Mechanical Characterization of a Natural Rubber, Polytechnic Institute of Brooklyn, Department of Aerospace Engineering and Applied Mechanics, PIBAL REPORT NO. 69-42, October, 1969.
  • Obata, Y., Kawabata, S. and Kawai, H., Mechanical Properties of Natural Rubber Vulcanizates in Finite Deformations, Journal of Polymer Science : Part A-2, 8, 903-919, 1970.
  • Kawabata, S. and Kawai, H., Strain Energy Density Functions of Rubber Vulcanizates From Biaxial Extension, Advances in Polymer Science, 24, 89-124, 1970.
  • Kawabata, S., Fracture and Mechanical Behaviour of Rubber-Like Polymer Under Finite Deformation in Biaxial Stress Field, Journal of Macromolecule Science-Physics, B8, 605-630, 1973.
  • Kawabata, S., Biaxial Testing of Elastomers, Proceeding of the 1973 Symposioum on Mechanical Behaviour of Materials, August, Kyoto, Japan, 299-308, 1974.
  • Kawabata, S., Matsuda, M., Tei, K. and Kawai, H., Experimental Survey of the Strain Energy Density Function Macromolecules, 14, 154-162, 1981. Rubber Vulcanizate,
  • Matsuda, M., Kawabata, S. and Kawai, H., Quantitative Analysis of the Strain Energy Density Function for cis-1,4- Polyisoprene Rubber Vulcanizate, Macromolecules, 14, 1688-1692, 1981.
  • San Miguel, A., An Automated Biaxial Sheet Tester, Experimental Mechanics, 12 (3), 155-157, 1972.
  • Durelli, A.J. and Parks, V.J., Natural Stress, International Journal of Non-Linear Mechanics, 4, 7-16, 1969.
  • James, A.G., Green, A. and Simpson, G.M., Strain Energy Functions of Rubber I: Characterization of Gum Vulcanizates, Journal of Applied Polymer Science, 19, 2033-2058, 1975.
  • James, A.G. and Green, A., Strain Energy Functions of Rubber II: Characterizations of Filled Vulcanizates, Journal of Applied Polymer Science, 19, 2319-2330, 1975.
  • Jones, D.F. and Treloar, L.R.G., The Properties of Rubber in Pure Homogeneous Strain, Journal of Physics, D: Applied Physics, 8, 1285-1304, 1975.
  • Chow, C.L. and Cundiff, C.H., On the Characterization of Mechanical Properties of Rubber Vulcanizates, Tire Science and Technology, 15 (2), 73-96, 1987.
  • Ortt, E.M., Doss, D.J., Legall, E., Wright, N.T., ve Humphrey, J.D., A Device for Evaluating the Multiaxial Finite Strain Thermomechanical Behaviour of Elastomers and Soft Tissues, Journal of Applied Mechanics, 67 (3), 465-471,
  • Boonstra, B.B.S.T., Stress-Strain Properties of Natural Rubber Under Biaxial Strain, Journal of Applied Physics, 21, 1098-1104, 1950.
  • Treloar, L.R.G., Strains in an Inflated Rubber Sheet and the Mechanism of Bursting, Rubber Chemistry and Technology, 17, 957-967, 1944b.
  • Hoppmann, W.H. and Wan, L., Large Deformation of Elastic Tubes, Journal of Biomechanics, 3, 593-600, 1970.
  • Alexander, H., Tensile Instability of Inıtially Spherical Balloons, International Journal of Engineering Science, 9, 151-162, 1971a.
  • Alexander, H., The Tensile Instability of an Inflated Cylindrical Membrane as Effected by an Axial Load, International Journal of Mechanical Science, 13, 87-95, 1971b.
  • Alexander, H., Constitutive Relation for Rubber-Like Materials, International Journal of Engineering Science, 6, 549-563, 1968.
  • Vangerko, H. and Treloar, L.R.G., The Inflation of Rubber Tube for Biaxial Strain Studies, Journal of Physics D: Applied Physics, 11, 1969-1978, 1978.
  • Anonim, Comression or Biaxial Extension?, Axel Products Testing and Analysis Report, Ann Arbor, Michigan, 2000.
  • Blatz,P.J. and Ko, W.L., Application of Finite Elastic Theory to the Deformation of Rubbery Materials, Transactions of the Faraday Society, 6, 223-251, 1962.
  • Blatz, P.J., Application of Finite Elastic Theory to the Behaviour of Rubberlike Materials, Rubber Chemistry and Technology, 36, 1459-1496, 1963.
  • McGuirt, C.W. and Lianis, G., Constitutive Equations for Viscoelastic Solids Under Finite Uniaxial and Biaxial Deformations, Transactions of the Society of Rheolgy, 14 (2), 117-134, 1970.
  • Vahapoğlu, V., Kauçuk Türü Malzemelerin Malzeme Sabitlerinin Eş-İki Eksenli Çekme Deneyi ile Belirlenmesi, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, KTÜ, 1998.
  • Day, J. and Miller, K., Equibiaxial Streching of Elastomeric Sheets, An Analytical Verification of Experimental Technique, ABAQUS 2000 User's Conference Proceeding, Newsport, Rhole Island, May 30 - June 2, 205-220, 2000.
  • Flint, C.F. and Naunton, J.S., Physical Testing of Latex Films, Rubber Chemistry and Technology, 10, 584-614, 1937.
  • Dickie, R.A. and Smith, T.L., Ultimate Tensile Properties of Elastomers. VI. Strenght and Extensibility of a Styrene- Butadiene Rubber Vulcanizate in Equal Biaxial Tension, Journal of Polymer Science: Part A-2: Polymer Physics Edition, 7, 687-707, 1969.
  • Merritt, D.R. and Weinhaus, F., The Pressure Curve for a Rubber Balloon, American Journal of Physics, 46 (10), 976-977, 1978.
  • James, H.M. and Guth, E., Theory of Elastic Properties of Rubber, The Journal of Chemical Physics, 11 (10), 455-481, 1943.
  • Johnson, M.A. and Beatty, M.F., The Mullins Effect in Equibiaxial Extension and its Influence on the Inflation of a Balloon, International Journal of Engineering Science, 33 (2), 223-245, 1945.
  • Johannknecht, R. and Jerrams, S.J., The Need for Equi- Biaxial Testing to Determine Elastomeric Material Properties, Proceeding of the First European Conference on Constitutive Models for Rubber, Vienna, Austria, 9-10 September, Ed. Dorfman A., and Muhr, A. 73-76, 1999.
  • Fukahari, Y. and Seki, S., Molecular Behaviour of Elastomeric Materials Under Large Deformation-I: Re-Evaluation of the Mooney-Rivlin Plot, Polymer, 33 (3), 502-508, 1999.
  • Takigawa, T., Yamasaki, S., Urayama, K., Takahashi, M., and Masuda, T., Stress-Strain Behaviour of Segmented Polyurethaneureas Under Pure Shear Deformation, Rheologica Acta, 35, 288-295, 1996.
  • Mooney, M., A Theory of Large Elastic Deformation, Journal of Applied Physics, 11, 582-592, 1940.
  • Mooney, M., Stress-Strain Curves of Rubbers in Simple Shear, Journal of Applied Physics, 35, 23-26, 1964.
  • Smith, T.L., and Frederick, J.E., Viscoelastic Properties of a Styrene-Butadiene Vulcanizate in Large Biaxial and Simple Tensile Deformations, Transactions of the Society of Rheology, 12 (3), 363-396, 1968.
  • ASTM D 575, Standard Test Methods for Rubber Properties in Compression, ASTM, Philadelphia, 1991.
  • Forster, M.J., Unilateral Compression of Rubber, Journal of Applied Physics, 26 (9), 1104-1106, 1955.
  • Lindley, P.B., Load-Compression Relationships of Rubber Units, Journal of Strain Analysis, 1 (3), 190-195, 1966.
  • McKenna, G.B., and Zapas, L.J., Experiments on the Small- Strain Behaviour of Crosslinked Natural Rubber: 2. Extension and Compression, Polymer, 24 (11), 1495-1501, 1983.
  • Yeoh, O.H., A Method for the Routine Determination of Compression Modulus of Rubber Vulcanizates, Polymer Testing, 7, 121-136, 1987.
  • Yeoh, O.H., Characterization of Elastic Properties of Carbon-Black Filled Rubber Vulcanizates, Rubber Chemistry and Technology, 63 (5), 792-805, 1990.
  • Arruda, E.M., and Boyce, M.C., A Three-Dimensional Constitutive Model for the Large Strecth Behaviour of Rubber Elastic Materials, Journal of the Mechanics and Physics of Solids, 41 (2), 389-412, 1993.
  • Gough, J., Muhr, A.H., and Thomas, A.G., Material Characterization for Finite Element Analysis of Rubber Components, Journal of Rubber Research, 1 (4), 222-239, 1998.
  • Noparatanakailas, V., Vulcanized Rubber Characterization for Finite Element Analysis, Journal od Rubber Reserach, 3 (4), 222-231, 2000.
  • Rivlin, R.S., Large Elastic Deformation, in Rheology: Theory and Applications, Ed.: Eirich, F.R., Volume-I, Chapter-10, Academic Press, Newyork, 1956, 351-385.
  • Gent, A.N., Engineering with Rubber, Hanser Publishers, Munich, 1992.
  • ASTM D 945, Standart Test Methods for Rubber Properties in Compression or Shear (Mechanical Oscillograph), ASTM, Philadelphia, 1992.
  • Eckert, G., Pechhold, W. and Schmid, M., On the Interrelation of Rubber Elastic Stress-Strain Curves Under Different Types of Strain, Polymer Engineering and Science, 32 (17), 1213-1216, 1992.
  • ISO 1827-2007, Rubber, Vulcanized or Thermoplastic- Determination of Shear Modulus and Adhesion to Rigid Plates-Quadruple-Shear Organization for Standardization, Geneva, 2007. Methods, International
  • BS 903: Part A14: 1970, Methods of Testing Vulcanized Rubber. Determination of Modulus in Shear of Rubber (Bonded Quadruple Shear Test Piece), British Standards Institution, 1970.
  • Van den Bogert, P.A.J. and Borst, R. de, On the Behaviour of Rubberlike Materials in Compression and Shear, Archieve of Applied Mechanics, 64, 136-146, 1994.
There are 86 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Vahap Vahapoğlu This is me

Publication Date January 1, 2013
Published in Issue Year 2013 Volume: 19 Issue: 1

Cite

APA Vahapoğlu, V. . (2013). Kauçuk Mekaniğinde Yapılan Deneyler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 19(1), 33-60. https://doi.org/10.5505/pajes.2013.10820
AMA Vahapoğlu V. Kauçuk Mekaniğinde Yapılan Deneyler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. January 2013;19(1):33-60. doi:10.5505/pajes.2013.10820
Chicago Vahapoğlu, Vahap. “Kauçuk Mekaniğinde Yapılan Deneyler”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 19, no. 1 (January 2013): 33-60. https://doi.org/10.5505/pajes.2013.10820.
EndNote Vahapoğlu V (January 1, 2013) Kauçuk Mekaniğinde Yapılan Deneyler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 19 1 33–60.
IEEE V. . Vahapoğlu, “Kauçuk Mekaniğinde Yapılan Deneyler”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 19, no. 1, pp. 33–60, 2013, doi: 10.5505/pajes.2013.10820.
ISNAD Vahapoğlu, Vahap. “Kauçuk Mekaniğinde Yapılan Deneyler”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 19/1 (January 2013), 33-60. https://doi.org/10.5505/pajes.2013.10820.
JAMA Vahapoğlu V. Kauçuk Mekaniğinde Yapılan Deneyler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2013;19:33–60.
MLA Vahapoğlu, Vahap. “Kauçuk Mekaniğinde Yapılan Deneyler”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 19, no. 1, 2013, pp. 33-60, doi:10.5505/pajes.2013.10820.
Vancouver Vahapoğlu V. Kauçuk Mekaniğinde Yapılan Deneyler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2013;19(1):33-60.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif