PDF EndNote BibTex Cite

Sentiment analysis with Twitter

Year 2016, Volume 22, Issue 2, 106 - 110, 01.05.2016

Abstract

Sentimental Twitter software is parsing, analyzing and reporting Twitter data, giving service to individuals and corporate users via its user friendly graphical user interface. Each tweet is classified as positive, negative or neutral in Sentimental Twitter. In this study, both lexicon and n-gram method has been used to perform and implement two different methods. As a result the lexicon method has been measured more performance than the n-gram method.

References

  • Szomszor MN, Kostkova P, de Quincey, E. “#Swineflu: Twitter predicts swine flu outbreak in 2009”. 3rd International ICST Conference on Electronic Healthcare for the 21st Century (eHEALTH2010), Casablanca, Morocco, 13-15 December 2010.
  • Bian J, Topaloglu U, Yu F. “Towards large-scale Twitter mining for drug-related adverse events”. International Workshop on Smart Health and Wellbeing (SHB’12), Maui, Hawaii, USA, 29 October-2 November 2012
  • Nguyen LE, Wu P, Chan W, Peng W, Zhang Y. “Predicting collective sentiment dynamics from time-series social media”. Workshop on Issues of Sentiment Discovery and Opinion Mining (WISDOM ’12), Beijing, China, 12 August 2012.
  • Claster WB, Dinh H, Cooper M. “Naive bayes and unsupervised artificial neural nets for Cancun tourismsocial media data analysis”. 2nd World Congress on Nature and Biologically Inspired Computing (NaBIC). Kitakyushu, Fukuoka, Japan, 15-17 December 2010.
  • Liu Y, Huang X, An A, Yu X. “ARSA: A sentiment awaremodel for predicting sales performance using blogs”. 30th ACM SIGIR International Conference on Research and Development in Information Retrieval, Amsterdam, the Netherlands, 23-27 July 2007.
  • Asur S, Huberman BA. “Predicting the Future with Social Media”. IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology (WI-IAT), Toronto, ON, Canada, 31 August-3 September 2010.
  • Joshi M, Das D, Gimpel K, Smith NA. “Movie reviews and revenues: an experiment in text regression”. Human Language Technologies: The 11th Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT), Los Angeles, CA, USA, 1-6 June 2010.
  • Bollen J, Mao H, Zeng X. “Twitter mood predicts the stock market”. Journal of Computational Science, 2(1), 1-8, 2011.
  • Pang B, Lee L, Vaithyanathan S. “Thumbs up? Sentiment classification using machine learning techniques”. Conference on Empirical Methods in Natural Language Processing (EMNLP), Philadelphia, PA, USA, 6-7 July 2002.
  • Turney PD. “Thumbs up or thumbs down? Semantic orientation Applied to unsupervised classification of reviews”. 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, PA, USA, 712 July 2002.
  • Eroğul U. Sentiment Analysis in Turkish. MSc Thesis, Middle East Technical University, Ankara, Turkey, 2009.
  • Vural AG, Cambazoğlu BB, Şenkul P, Tokgöz ZO. “A frame work for sentiment analysis in Turkish: Application to polarity detection of movie reviews in Turkish”. 27th International Symposium on Computer and Information Sciences, Paris, France, 3-4 October 2012.
  • Meral M, Diri B. “Twitter üzerinde duygu analizi”. IEEE 22. Sinyal İşleme ve İletişim Uygulamaları Kurultayı, Trabzon, Türkiye, 23-25 Nisan 2014.
  • Şimşek M, Özdemir S. “Analysis of the relation between Turkish twitter messages and stock market index”. 6th International Conference on Application of Information and Communication Technologies (AICT), Tbilisi, Georgia, 1719 October 2012.
  • Türkmenoğlu C, Tantuğ AC. “Sentiment analysis in Turkish media”. Workshop on Issues of Sentiment Discovery and Opinion Mining (WISDOM ’14), Beijing, China, 21-26 June 2014.

Twitter verileri ile duygu analizi

Year 2016, Volume 22, Issue 2, 106 - 110, 01.05.2016

Abstract

Duygusal Twitter, kullanıcıya kullanım kolaylığı sağlayan ve görsel kullanıcı ara yüzü ile hem bireysel, hem de kurumsal kullanıcılar için Twitter verisini ayrıştıran, analiz eden ve raporlayan bir programdır. Duygusal Twitter’da her tweet için olumlu, olumsuz ve nötr olmak üzere 3 farklı sonuç döndürülmektedir. Çalışmada hem sözlük hem de n-gram modeli kullanılarak iki yöntem geliştirilmiştir. Sözlük yöntemi, n-gram yöntemine göre daha başarılı sonuçlar vermiştir.

References

  • Szomszor MN, Kostkova P, de Quincey, E. “#Swineflu: Twitter predicts swine flu outbreak in 2009”. 3rd International ICST Conference on Electronic Healthcare for the 21st Century (eHEALTH2010), Casablanca, Morocco, 13-15 December 2010.
  • Bian J, Topaloglu U, Yu F. “Towards large-scale Twitter mining for drug-related adverse events”. International Workshop on Smart Health and Wellbeing (SHB’12), Maui, Hawaii, USA, 29 October-2 November 2012
  • Nguyen LE, Wu P, Chan W, Peng W, Zhang Y. “Predicting collective sentiment dynamics from time-series social media”. Workshop on Issues of Sentiment Discovery and Opinion Mining (WISDOM ’12), Beijing, China, 12 August 2012.
  • Claster WB, Dinh H, Cooper M. “Naive bayes and unsupervised artificial neural nets for Cancun tourismsocial media data analysis”. 2nd World Congress on Nature and Biologically Inspired Computing (NaBIC). Kitakyushu, Fukuoka, Japan, 15-17 December 2010.
  • Liu Y, Huang X, An A, Yu X. “ARSA: A sentiment awaremodel for predicting sales performance using blogs”. 30th ACM SIGIR International Conference on Research and Development in Information Retrieval, Amsterdam, the Netherlands, 23-27 July 2007.
  • Asur S, Huberman BA. “Predicting the Future with Social Media”. IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology (WI-IAT), Toronto, ON, Canada, 31 August-3 September 2010.
  • Joshi M, Das D, Gimpel K, Smith NA. “Movie reviews and revenues: an experiment in text regression”. Human Language Technologies: The 11th Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT), Los Angeles, CA, USA, 1-6 June 2010.
  • Bollen J, Mao H, Zeng X. “Twitter mood predicts the stock market”. Journal of Computational Science, 2(1), 1-8, 2011.
  • Pang B, Lee L, Vaithyanathan S. “Thumbs up? Sentiment classification using machine learning techniques”. Conference on Empirical Methods in Natural Language Processing (EMNLP), Philadelphia, PA, USA, 6-7 July 2002.
  • Turney PD. “Thumbs up or thumbs down? Semantic orientation Applied to unsupervised classification of reviews”. 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, PA, USA, 712 July 2002.
  • Eroğul U. Sentiment Analysis in Turkish. MSc Thesis, Middle East Technical University, Ankara, Turkey, 2009.
  • Vural AG, Cambazoğlu BB, Şenkul P, Tokgöz ZO. “A frame work for sentiment analysis in Turkish: Application to polarity detection of movie reviews in Turkish”. 27th International Symposium on Computer and Information Sciences, Paris, France, 3-4 October 2012.
  • Meral M, Diri B. “Twitter üzerinde duygu analizi”. IEEE 22. Sinyal İşleme ve İletişim Uygulamaları Kurultayı, Trabzon, Türkiye, 23-25 Nisan 2014.
  • Şimşek M, Özdemir S. “Analysis of the relation between Turkish twitter messages and stock market index”. 6th International Conference on Application of Information and Communication Technologies (AICT), Tbilisi, Georgia, 1719 October 2012.
  • Türkmenoğlu C, Tantuğ AC. “Sentiment analysis in Turkish media”. Workshop on Issues of Sentiment Discovery and Opinion Mining (WISDOM ’14), Beijing, China, 21-26 June 2014.

Details

Primary Language English
Journal Section Research Article
Authors

Eyüp Sercan AKGÜL This is me


Caner ERTANO This is me


Banu DİRİ>

Publication Date May 1, 2016
Published in Issue Year 2016, Volume 22, Issue 2

Cite

Bibtex @ { pajes219180, journal = {Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi}, issn = {1300-7009}, eissn = {2147-5881}, address = {}, publisher = {Pamukkale University}, year = {2016}, volume = {22}, number = {2}, pages = {106 - 110}, title = {Sentiment analysis with Twitter}, key = {cite}, author = {Akgül, Eyüp Sercan and Ertano, Caner and Diri, Banu} }
APA Akgül, E. S. , Ertano, C. & Diri, B. (2016). Sentiment analysis with Twitter . Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi , 22 (2) , 106-110 . Retrieved from https://dergipark.org.tr/en/pub/pajes/issue/20566/219180
MLA Akgül, E. S. , Ertano, C. , Diri, B. "Sentiment analysis with Twitter" . Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 22 (2016 ): 106-110 <https://dergipark.org.tr/en/pub/pajes/issue/20566/219180>
Chicago Akgül, E. S. , Ertano, C. , Diri, B. "Sentiment analysis with Twitter". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 22 (2016 ): 106-110
RIS TY - JOUR T1 - Sentiment analysis with Twitter AU - Eyüp Sercan Akgül , Caner Ertano , Banu Diri Y1 - 2016 PY - 2016 N1 - DO - T2 - Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi JF - Journal JO - JOR SP - 106 EP - 110 VL - 22 IS - 2 SN - 1300-7009-2147-5881 M3 - UR - Y2 - 2022 ER -
EndNote %0 Pamukkale University Journal of Engineering Sciences Sentiment analysis with Twitter %A Eyüp Sercan Akgül , Caner Ertano , Banu Diri %T Sentiment analysis with Twitter %D 2016 %J Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi %P 1300-7009-2147-5881 %V 22 %N 2 %R %U
ISNAD Akgül, Eyüp Sercan , Ertano, Caner , Diri, Banu . "Sentiment analysis with Twitter". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 22 / 2 (May 2016): 106-110 .
AMA Akgül E. S. , Ertano C. , Diri B. Sentiment analysis with Twitter. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2016; 22(2): 106-110.
Vancouver Akgül E. S. , Ertano C. , Diri B. Sentiment analysis with Twitter. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2016; 22(2): 106-110.
IEEE E. S. Akgül , C. Ertano and B. Diri , "Sentiment analysis with Twitter", Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 22, no. 2, pp. 106-110, May. 2016

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif