BibTex RIS Cite

Nanopartiküllerin çevresel akıbetleri ve anaerobik parçalanma prosesine etkileri

Year 2016, Volume: 22 Issue: 6, 503 - 512, 20.12.2016

Abstract

boyutlu partiküllerine göre elektrokimyasal,
katalitik ve optik özellikler olmak üzere çok daha farklı fiziksel ve kimyasal
özellikler göstermektedirler. Bu farklılaşmalardan dolayı endüstride
kendilerine kolayca kullanım alanı bulmaktadırlar. Duş, bulaşık, çamaşır ve
yağmur sularının nanopartikül içeren ürünlere teması ile suya karışan
nanopartiküller, suyun izlediği yolu izlemekte ve bu şekilde nanopartiküller
atıksu arıtma tesisine ulaşmaktadırlar. Bu çalışmada nanopartiküllerin
endüstriyel kullanımları ve potansiyel toksik etkileri hakkında bilgi verilmiş,
biyokütleden enerji üretiminde etkin bir şekilde kullanılan anaerobik parçalama
prosesinin avantajlarına değinilmiş ve çevresel akıbetleri sonucunda atıksu
arıtma tesislerinde anaerobik prosese dahil olan nanopartiküllerin bu prosesi
nasıl etkilediğini araştıran çalışmalar incelenmiştir.

References

  • Kökdemir Ünşar E. Nanopartiküllerin Evsel Arıtma Çamurlarının Anaerobik Parçalanabilirliği Üzerine Etkilerinin Belirlenmesi. Yüksek Lisans Tezi, Akdeniz Üniversitesi, Antalya, Türkiye, 2013.
  • Lam CW, James JT, McCluskey R, Hunter RL. “Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation”. Toxicol Sciences, 77(1), 126-134, 2004.
  • Handy RD, Shaw BJ. “Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology”. Health Risk Society, 9(2), 125-144, 2007.
  • Handy RD, Von Der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M. “The ecotoxicology and chemistry of manufactured nanoparticles”. Ecotoxicology, 17(4), 287-314, 2008.
  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendre S, McLaughlin MJ, Lead JR. “Nanomaterials in the environment: Behavior, fate, bioavailability and effects”. Environmental Toxicology and Chemistry, 27(9), 1825-1851, 2008.
  • Barrena R, Casals E, Colon J, Font X, Sanchez A. Puntes V. “Evaluation of the ecotoxicity of model nanoparticles”. Chemosphere, 75(7), 850-857, 2009.
  • Khanna V. Environmental and Risk Assessment at Multiple Scales with Application to Emerging Nanotechnologies, PhD. Dissertation, Ohio State University, Ohio, USA, 2009.
  • Savolainen K, Alenius H, Norppa H, Pylkkanen L, Tuomi T, Kasper G. “Risk assessment of engineered nanomaterials and nanotechnologies-a review”. Toxicology, 269(2-3), 92-104, 2010.
  • Tae Kim K, Klaine SJ, Cho J, Kim SH, Kim SD. “Oxidative stres responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction”. Science of the Total Environment, 408(10), 2268-2272, 2010.
  • Kahru A, Dubourguier HC. “From ecotoxicology to nanotoxicology”. Toxicology, 269(2-3), 105-119. 2010.
  • Peralta-Videa J, Zhao L, Lopez-Moreno ML, De La Rosa G, Hong J, Gardea-Torresdey JL. “Nanomaterials and the Environment: A review for the biennium 2008-2010”. Journal of Hazardous Materials, 186(1), 1-15, 2011.
  • Erkoç Ş. Nanobilim ve Nanoteknoloji, ODTÜ Yayıncılık, Ankara, Türkiye, 2011.
  • Nortwestern University. “Discovernano 2005”. http://discovernano.org/whatis/index_html/howsmall_html.html (10.09.2015).
  • Hester RE, Harrison RM. Nanotechnology: Consequences for Human Health and the Environment. USA, RSC Publishing, 2007.
  • Buzea C, Pacheco II, Robbie K. “Nanomaterials and nanoparticles: Sources and toxicity”. Biointerphases, 2(4), 17-71, 2007.
  • Yanamala N, Kagan VE, Shvedona AA. “Molecular modeling in structural nano-toxicology: Interactions of nano-particles with nano-machinary of cells”. Advenced Drug Delivery Reviews, 65(15), 2070-2077, 2013.
  • Kim B, Park CS, Murayama M, Hochella MF. “Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products”. Environmental Science & Technology, 44(19), 7509-7514, 2010.
  • Luther W. Industrial Application of Nanomaterials-Chances and Risks, Future Technologies, USA, Verlag-und Vertriebsges, 2004.
  • Brar SK, Verma M, Tyagi RD, Surampalli RY. “Engineered nanoparticles in wastewater and wastewater sludge-evidence and impacts”. Waste Management, 30, 504-520, 2010.
  • Garcia A, Delgado L, Tora JA, Casals E, Gonzales E, Puntes V, Font X, Carrera J, Sanchez A. “Effect of cerium dioxide, titanium dioxide, silver and gold nanoparticles on the activity of microbial communities intended in wastewater treatment”. Journal of Hazardous Materials, 199-200, 64-72, 199-200, 2012.
  • Scientific Committee On Emerging and Newly Identified Health Risks. “Risk Assessment of Products of Nanotecnologies”. European Commission, 71, 2009.
  • Takenaka S, Karg E, Kreyling WG, Lentner B, Schulz H, Ziesenis A, Schramel P, Heyder J. “Fate and toxic effects of ınhaled ultrafine cadmium oxide particles in the rat lung”. Inhal Toxicol, 16(1), 83-92, 2004.
  • Hallock MF, Greenley P, Diberardinis L, Kallin D. “Potential risks of nanomaterials and how to safely handle materials of uncertain toxicity”. Journal of Chemical Health and Safety, 16(1), 16-23, 2009.
  • EU Science Hub. “Engineered Nanoparticles: Review of Health and Environmental Safety, Project Final Report”. http://ihcp.jrc.ec.europa.eu/whats-new/enhres-final-report, (10.09.2015).
  • Benn TM, Westerhoff P. “Nanoparticle silver released into water from commercially available sock fabrics”. Environmental Science & Technology, 42(11), 4133-4139, 2008.
  • Limbach LK, Bereiter R, Müller E, Krebs R, Stark WJ. “Removal of oxide nanoparticles in a model wastewater treatment plant: Influence of agglomeration and surfactants on clearing efficiency”. Environmental Science & Technology, 42(15), 5828-5833, 2008.
  • Kiser MA, Ryu H, Jang H, Hristoski K, Westerhoff P. “Biosorption of nanoparticles to heterotrophic wastewater biomass”. Water Research, 44(14), 4105-4114, 2010.
  • Wang Y, Westerhoff P, Hristovski KD. “Fate and biological effects of silver, titanium dioxide and C60 (fullerene) nanomaterials during simulated wastewater treatment processes”. Journal of Hazardous Materials, 201-202, 16-22, 2012.
  • Yang Y, Chen Q, Wall JD, Hu Z. “Potential nanosilver ımpact on anaerobic digestion at moderate silver concentrations”. Water Research, 46(4), 1176-1184, 2012.
  • Filibeli A. Arıtma Çamurlarının İşlenmesi. 7. baskı. İzmir, Türkiye, Dokuz Eylül Üniversitesi, Müh. Fak. Yayınları No: 255, 2007.
  • Öztürk İ. “Atık Sektörü Mevcut Durum Değerlendirmesi Raporu”. TC. Çevre ve Orman Bakanlığı Çevre Yönetimi Genel Müdürlüğü, Ankara, Türkiye, 2010.
  • Gloyna EF. An Analysis of Research Needs Concerning the Treatment, Utilization and Disposal of Wastewater Treatment Plant Sludges. 1st ed. Washington D.C., USA, Water Pollution Control Federation Highlights, 1982.
  • Andreottola G, Foladori PA. “Review and assessment of emerging technologies for the minimization of excess sludge production in wastewater treatment plants”. Journal of Environmental Science and Health, Part A, 41(9), 1853-1872, 2006.
  • Chen GH, Saby S, Djaer M, Mo HK. “New approaches to minimize excess sludge in activated sludge systems”. Water Science and Technology, 44(10), 203-208, 2001.
  • Cao Y, Pawlowski A. “Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: brief overview and energy efficiency assesment”. Renewable and Sustainable Energy Reviews, 16(3), 1657-1665, 2012.
  • Khanal SK. Anaerobic Biotechnology for Bioenergy Production: Principles and Applications. USA, John Wiley & Sons, 2008.
  • Base Energy Inc.. “Municipal Wastewater Treatment Plant Energy Baseline Study”. PG & E New Construction Energy Management Program, San Francisco, USA, 91, 2003.
  • Tyagi VK, Lo SL. “Sludge: A waste or renewable source for energy and resources recovery?”. Renewable and Sustainable Energy Reviews, 25, 708-728, 2013.
  • Öztürk İ. Anaerobik Arıtma ve Uygulamaları. İstanbul, Türkiye, Su Vakfı Yayınları, 2007.
  • Nges A, Liu J. “Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions”. Renewable Energy, 35(10), 2200-2206, 2010.
  • Olsson G, Nielsen M, Yuan Z, Lynggaard JA, Steyer JP. “Instrumentation, Control and Automation in Wastewater Systems”. UK, IWA Scientific & Technical Report, 15, 2005.
  • Perendeci A, Tanyolaç A, Çelebi SS. “A simplified kinetic model for a full scale anaerobic wastewater treatment plant of a sugar factory under unsteady conditions”. Desalination and Water Treatment, 40(1-3), 118-128, 2012.
  • Stasinakis AS. “Review on the fate of emerging contaminants during sludge anaerobic digestion”. Bioresource Technology, 121, 432-440, 2012.
  • Çetecioğlu Z, İnce B, Gros M, Mozaz Rodriguez S, Barcelo D, Orhon D, İnce O. “Chronic ımpact of tetracycline on the biodegradation of an organic substrate mixture under anaerobic conditions”. Water Research, 47(9), 2959-2969, 2013.
  • Çetecioğlu Z, İnce B, Orhon D, İnce O. “Acute inhibitory impact of antimicrobials on acetoclastic methanogenic activity”. Bioresource Technology, 114, 109-116, 2012.
  • ISO 13641-1:2003. Water Quality-Determination of Inhibition of Gas Production of Anaerobic Bacteria, Part 1: General Test, 2003.
  • Ruiz L, Blazquez R, Soto M. “Methanogenic toxicity in anaerobic digesters treating municipal wastewater”. Bioresource Technology, 100(1), 97-103, 2009.
  • Carrere H, Sialve B, Bernet N. “Improving pig manure converison into biogas by thermal and thermo-chemical pretreatments”. Bioresource Technology, 100(2009),3690-3694.
  • Nyberg L, Turco R.F, Nies L. “Assessing the impact of nanomaterials on anaerobic microbial communities”. Environmental Science & Technology, 42(6), 1938-1943, 2008.
  • Luna del-Risco M, Orupold K, Dubourguier HC. “Particle-Size effect of cuo and zno on biogas and methane production during anaerobic digestion”. Journal of Hazardous Materials, 189(1-2), 603-608, 2011.
  • Mu H, Chen Y. “Long-Term effect of zno nanoparticles on waste activated sludge anaerobic digestion”. Water Research, 45(17), 5612-5620, 2011.
  • Mu H, Chen Y, Xiao N. “Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion”. Bioresource Technology, 102(22), 10305-10311, 2011.

Environmental fate of nanoparticles and their impacts on anaerobic digestion process

Year 2016, Volume: 22 Issue: 6, 503 - 512, 20.12.2016

Abstract

Compared to larger sized particles,
nanoparticles have very different electrochemical, catalytic, optical, physical
and chemical properties. Because of these different properties, nanoparticles
are widely used in industry. By the contact of water from dishwashing, shower,
rain, etc., nanoparticle containing products release nanoparticles and waste
water carries them to waste water treatment plants. In this study, information
about industrial use and potential toxic effects of nanoparticles were given. The
advantages of anaerobic digestion process which is used effectively for energy
producing from sludge biomass is explained and researches with a focus on the
impacts of nanoparticles, which involve in anaerobic digestion due to their
environmental pathway, on anaerobic digestion process have been reviewed.

References

  • Kökdemir Ünşar E. Nanopartiküllerin Evsel Arıtma Çamurlarının Anaerobik Parçalanabilirliği Üzerine Etkilerinin Belirlenmesi. Yüksek Lisans Tezi, Akdeniz Üniversitesi, Antalya, Türkiye, 2013.
  • Lam CW, James JT, McCluskey R, Hunter RL. “Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation”. Toxicol Sciences, 77(1), 126-134, 2004.
  • Handy RD, Shaw BJ. “Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology”. Health Risk Society, 9(2), 125-144, 2007.
  • Handy RD, Von Der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M. “The ecotoxicology and chemistry of manufactured nanoparticles”. Ecotoxicology, 17(4), 287-314, 2008.
  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendre S, McLaughlin MJ, Lead JR. “Nanomaterials in the environment: Behavior, fate, bioavailability and effects”. Environmental Toxicology and Chemistry, 27(9), 1825-1851, 2008.
  • Barrena R, Casals E, Colon J, Font X, Sanchez A. Puntes V. “Evaluation of the ecotoxicity of model nanoparticles”. Chemosphere, 75(7), 850-857, 2009.
  • Khanna V. Environmental and Risk Assessment at Multiple Scales with Application to Emerging Nanotechnologies, PhD. Dissertation, Ohio State University, Ohio, USA, 2009.
  • Savolainen K, Alenius H, Norppa H, Pylkkanen L, Tuomi T, Kasper G. “Risk assessment of engineered nanomaterials and nanotechnologies-a review”. Toxicology, 269(2-3), 92-104, 2010.
  • Tae Kim K, Klaine SJ, Cho J, Kim SH, Kim SD. “Oxidative stres responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction”. Science of the Total Environment, 408(10), 2268-2272, 2010.
  • Kahru A, Dubourguier HC. “From ecotoxicology to nanotoxicology”. Toxicology, 269(2-3), 105-119. 2010.
  • Peralta-Videa J, Zhao L, Lopez-Moreno ML, De La Rosa G, Hong J, Gardea-Torresdey JL. “Nanomaterials and the Environment: A review for the biennium 2008-2010”. Journal of Hazardous Materials, 186(1), 1-15, 2011.
  • Erkoç Ş. Nanobilim ve Nanoteknoloji, ODTÜ Yayıncılık, Ankara, Türkiye, 2011.
  • Nortwestern University. “Discovernano 2005”. http://discovernano.org/whatis/index_html/howsmall_html.html (10.09.2015).
  • Hester RE, Harrison RM. Nanotechnology: Consequences for Human Health and the Environment. USA, RSC Publishing, 2007.
  • Buzea C, Pacheco II, Robbie K. “Nanomaterials and nanoparticles: Sources and toxicity”. Biointerphases, 2(4), 17-71, 2007.
  • Yanamala N, Kagan VE, Shvedona AA. “Molecular modeling in structural nano-toxicology: Interactions of nano-particles with nano-machinary of cells”. Advenced Drug Delivery Reviews, 65(15), 2070-2077, 2013.
  • Kim B, Park CS, Murayama M, Hochella MF. “Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products”. Environmental Science & Technology, 44(19), 7509-7514, 2010.
  • Luther W. Industrial Application of Nanomaterials-Chances and Risks, Future Technologies, USA, Verlag-und Vertriebsges, 2004.
  • Brar SK, Verma M, Tyagi RD, Surampalli RY. “Engineered nanoparticles in wastewater and wastewater sludge-evidence and impacts”. Waste Management, 30, 504-520, 2010.
  • Garcia A, Delgado L, Tora JA, Casals E, Gonzales E, Puntes V, Font X, Carrera J, Sanchez A. “Effect of cerium dioxide, titanium dioxide, silver and gold nanoparticles on the activity of microbial communities intended in wastewater treatment”. Journal of Hazardous Materials, 199-200, 64-72, 199-200, 2012.
  • Scientific Committee On Emerging and Newly Identified Health Risks. “Risk Assessment of Products of Nanotecnologies”. European Commission, 71, 2009.
  • Takenaka S, Karg E, Kreyling WG, Lentner B, Schulz H, Ziesenis A, Schramel P, Heyder J. “Fate and toxic effects of ınhaled ultrafine cadmium oxide particles in the rat lung”. Inhal Toxicol, 16(1), 83-92, 2004.
  • Hallock MF, Greenley P, Diberardinis L, Kallin D. “Potential risks of nanomaterials and how to safely handle materials of uncertain toxicity”. Journal of Chemical Health and Safety, 16(1), 16-23, 2009.
  • EU Science Hub. “Engineered Nanoparticles: Review of Health and Environmental Safety, Project Final Report”. http://ihcp.jrc.ec.europa.eu/whats-new/enhres-final-report, (10.09.2015).
  • Benn TM, Westerhoff P. “Nanoparticle silver released into water from commercially available sock fabrics”. Environmental Science & Technology, 42(11), 4133-4139, 2008.
  • Limbach LK, Bereiter R, Müller E, Krebs R, Stark WJ. “Removal of oxide nanoparticles in a model wastewater treatment plant: Influence of agglomeration and surfactants on clearing efficiency”. Environmental Science & Technology, 42(15), 5828-5833, 2008.
  • Kiser MA, Ryu H, Jang H, Hristoski K, Westerhoff P. “Biosorption of nanoparticles to heterotrophic wastewater biomass”. Water Research, 44(14), 4105-4114, 2010.
  • Wang Y, Westerhoff P, Hristovski KD. “Fate and biological effects of silver, titanium dioxide and C60 (fullerene) nanomaterials during simulated wastewater treatment processes”. Journal of Hazardous Materials, 201-202, 16-22, 2012.
  • Yang Y, Chen Q, Wall JD, Hu Z. “Potential nanosilver ımpact on anaerobic digestion at moderate silver concentrations”. Water Research, 46(4), 1176-1184, 2012.
  • Filibeli A. Arıtma Çamurlarının İşlenmesi. 7. baskı. İzmir, Türkiye, Dokuz Eylül Üniversitesi, Müh. Fak. Yayınları No: 255, 2007.
  • Öztürk İ. “Atık Sektörü Mevcut Durum Değerlendirmesi Raporu”. TC. Çevre ve Orman Bakanlığı Çevre Yönetimi Genel Müdürlüğü, Ankara, Türkiye, 2010.
  • Gloyna EF. An Analysis of Research Needs Concerning the Treatment, Utilization and Disposal of Wastewater Treatment Plant Sludges. 1st ed. Washington D.C., USA, Water Pollution Control Federation Highlights, 1982.
  • Andreottola G, Foladori PA. “Review and assessment of emerging technologies for the minimization of excess sludge production in wastewater treatment plants”. Journal of Environmental Science and Health, Part A, 41(9), 1853-1872, 2006.
  • Chen GH, Saby S, Djaer M, Mo HK. “New approaches to minimize excess sludge in activated sludge systems”. Water Science and Technology, 44(10), 203-208, 2001.
  • Cao Y, Pawlowski A. “Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: brief overview and energy efficiency assesment”. Renewable and Sustainable Energy Reviews, 16(3), 1657-1665, 2012.
  • Khanal SK. Anaerobic Biotechnology for Bioenergy Production: Principles and Applications. USA, John Wiley & Sons, 2008.
  • Base Energy Inc.. “Municipal Wastewater Treatment Plant Energy Baseline Study”. PG & E New Construction Energy Management Program, San Francisco, USA, 91, 2003.
  • Tyagi VK, Lo SL. “Sludge: A waste or renewable source for energy and resources recovery?”. Renewable and Sustainable Energy Reviews, 25, 708-728, 2013.
  • Öztürk İ. Anaerobik Arıtma ve Uygulamaları. İstanbul, Türkiye, Su Vakfı Yayınları, 2007.
  • Nges A, Liu J. “Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions”. Renewable Energy, 35(10), 2200-2206, 2010.
  • Olsson G, Nielsen M, Yuan Z, Lynggaard JA, Steyer JP. “Instrumentation, Control and Automation in Wastewater Systems”. UK, IWA Scientific & Technical Report, 15, 2005.
  • Perendeci A, Tanyolaç A, Çelebi SS. “A simplified kinetic model for a full scale anaerobic wastewater treatment plant of a sugar factory under unsteady conditions”. Desalination and Water Treatment, 40(1-3), 118-128, 2012.
  • Stasinakis AS. “Review on the fate of emerging contaminants during sludge anaerobic digestion”. Bioresource Technology, 121, 432-440, 2012.
  • Çetecioğlu Z, İnce B, Gros M, Mozaz Rodriguez S, Barcelo D, Orhon D, İnce O. “Chronic ımpact of tetracycline on the biodegradation of an organic substrate mixture under anaerobic conditions”. Water Research, 47(9), 2959-2969, 2013.
  • Çetecioğlu Z, İnce B, Orhon D, İnce O. “Acute inhibitory impact of antimicrobials on acetoclastic methanogenic activity”. Bioresource Technology, 114, 109-116, 2012.
  • ISO 13641-1:2003. Water Quality-Determination of Inhibition of Gas Production of Anaerobic Bacteria, Part 1: General Test, 2003.
  • Ruiz L, Blazquez R, Soto M. “Methanogenic toxicity in anaerobic digesters treating municipal wastewater”. Bioresource Technology, 100(1), 97-103, 2009.
  • Carrere H, Sialve B, Bernet N. “Improving pig manure converison into biogas by thermal and thermo-chemical pretreatments”. Bioresource Technology, 100(2009),3690-3694.
  • Nyberg L, Turco R.F, Nies L. “Assessing the impact of nanomaterials on anaerobic microbial communities”. Environmental Science & Technology, 42(6), 1938-1943, 2008.
  • Luna del-Risco M, Orupold K, Dubourguier HC. “Particle-Size effect of cuo and zno on biogas and methane production during anaerobic digestion”. Journal of Hazardous Materials, 189(1-2), 603-608, 2011.
  • Mu H, Chen Y. “Long-Term effect of zno nanoparticles on waste activated sludge anaerobic digestion”. Water Research, 45(17), 5612-5620, 2011.
  • Mu H, Chen Y, Xiao N. “Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion”. Bioresource Technology, 102(22), 10305-10311, 2011.
There are 52 citations in total.

Details

Subjects Engineering
Journal Section Review Article
Authors

Elçin Kökdemir Ünşar This is me

N. Altınay Perendeci This is me

Publication Date December 20, 2016
Published in Issue Year 2016 Volume: 22 Issue: 6

Cite

APA Kökdemir Ünşar, E., & Perendeci, N. A. (2016). Nanopartiküllerin çevresel akıbetleri ve anaerobik parçalanma prosesine etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(6), 503-512.
AMA Kökdemir Ünşar E, Perendeci NA. Nanopartiküllerin çevresel akıbetleri ve anaerobik parçalanma prosesine etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. December 2016;22(6):503-512.
Chicago Kökdemir Ünşar, Elçin, and N. Altınay Perendeci. “Nanopartiküllerin çevresel akıbetleri Ve Anaerobik parçalanma Prosesine Etkileri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 22, no. 6 (December 2016): 503-12.
EndNote Kökdemir Ünşar E, Perendeci NA (December 1, 2016) Nanopartiküllerin çevresel akıbetleri ve anaerobik parçalanma prosesine etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 22 6 503–512.
IEEE E. Kökdemir Ünşar and N. A. Perendeci, “Nanopartiküllerin çevresel akıbetleri ve anaerobik parçalanma prosesine etkileri”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 22, no. 6, pp. 503–512, 2016.
ISNAD Kökdemir Ünşar, Elçin - Perendeci, N. Altınay. “Nanopartiküllerin çevresel akıbetleri Ve Anaerobik parçalanma Prosesine Etkileri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 22/6 (December 2016), 503-512.
JAMA Kökdemir Ünşar E, Perendeci NA. Nanopartiküllerin çevresel akıbetleri ve anaerobik parçalanma prosesine etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2016;22:503–512.
MLA Kökdemir Ünşar, Elçin and N. Altınay Perendeci. “Nanopartiküllerin çevresel akıbetleri Ve Anaerobik parçalanma Prosesine Etkileri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 22, no. 6, 2016, pp. 503-12.
Vancouver Kökdemir Ünşar E, Perendeci NA. Nanopartiküllerin çevresel akıbetleri ve anaerobik parçalanma prosesine etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2016;22(6):503-12.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif