IEEE 802.11 kablosuz LAN kullanarak PROFIBUS segmentlerin genişletilmesi
Year 2017,
Volume: 23 Issue: 5, 573 - 580, 20.10.2017
Cüneyt Bayılmış
,
İbrahim Özçelik
Abstract
PROFIBUS
uluslararası standartlar ile tanımlanmış endüstriyel süreç kontrol
uygulamalarında yaygın kullanıma sahip bir saha veri yoludur. Diğer saha veri
yolu sistemleri gibi PROFIBUS sistemlerin de bağımsız saha veri yolu
segmentlerini genişletmek ve diğer ağlar ile haberleşmek olmak üzere iki temel
gereksinimi vardır. Bu gereksinimleri
karşılamak için en iyi çözüm yüksek veri iletim hızları, maliyet ve
hareketlilik gibi avantajları ile kablosuz ağ teknolojilerinden yararlanmaktır.
Bu araştırma çalışmasında PROFIBUS segmentleri IEEE 802.11g WLAN aracılığıyla
genişletmek için tasarlanan PROFIBUS/IEEE 802.11g WLAN Kablosuz Arabağlaşım
Birimi (KAB) sunulmaktadır. Tasarlanan PROFIBUS/IEEE 802.11g WLAN KAB’ın
modellemesi ve bilgisayarlı benzetimi ayrık olay simülasyon tekniği ile
gerçekleştirilmiştir. Kablosuz Arabağlaşım Biriminin başarım analizi, PROFIBUS saha
veri yolunun kullanım oranı, bağımsız PROFIBUS segmentlerin (uzak) mesajlarının
uçtan-uca gecikme ve KAB’ın işlem zamanı parametrelerine göre
gerçekleştirilmiştir.
References
- Thomesse JP. “Fieldbus technology in industrial automation”. Proceedings of the IEEE, 93(6), 1073-1101, 2005.
- Ozcelik I, Ekiz H. “Design, implementation and performance analysis of the PROFIBUS/ATM Local Bridge”. Computer Standards & Interface, 26(4), 329-342, 2004.
- Bayilmis C, Erturk I, Ceken C, Ozcelik I. “A CAN/IEEE 802.11b wireless lan local bridge design”. Computer Standards & Interface, 30(3), 200-212, 2008.
- Cavalieri S, Pano D. “A novel solution to interconnect FieldBus systems using IEEE wireless LAN technology”. Computer Standards & Interface, 20(1), 9-23, 1998.
- Erturk I. “A new method for transferring CAN messages using wireless ATM”. Journal of Network and Computer Applications, 28(3), 45-56, 2005.
- Ozcelik I. “Interconnection of CAN segments through IEEE 802.16 wireless MAN”. Journal of Network and Computer Applications, 31 (4), 879-890, 2008.
- Koulamas C, Koubias G, Papadopulos G. “Using cut-through forwarding to retain the real-time properties of profibus over hybrid wired/wireless architectures”. IEEE Transactions on Industrial Electronics, 51(6), 1208-1217, 2004.
- Alves F. Real-Time Communications Over Hybrid Wired/Wireless PROFIBUS-Based Networks. Phd Thesis, Porto University, Porto, Portogual, 2003.
- Sousa PB, Ferreira LL. “Hybrid Wired/Wireless PROFIBUS architectures: Performance study based on simulation models”. EURASIP Journal on Wireless Communications and Networking, 2010 (1), 1-25, 2010.
- Kjellsson J, Vallestad AE, Steigmann R, Dzung D. “Integration of a wireless I/O interface for PROFIBUS and PROFINET for factory automation”. IEEE Transaction on Industrial Electronics, 56(10), 4279-4287, 2009.
- Zhong L, Liu S, Zhang X, Liang W, Zhou Y. “Interconnection technique between wireless factory automation network and PROFIBUS-DP”. 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June - 4 July 2014.
- Pellegrini F, Miorandi D, Vitturi S, Zanella A. “On the use of wireless networks at low level of factory automation systems”. IEEE Transactions on Industrial Informatics, 2 (2), 129-143, 2006.
- Willig A, Matheus K., Wolisz A. “Wireless technology in industrial networks”. Proceedings of the IEEE, 93(6), 1130-1151, 2005.
- International Electrotechnical Commission. “PROFIBUS Specification”. Switzerland, IEC 61158, 2000.
- PROFIBUS Nutzerorganisation.“PROFIBUS Brochure: PROFIBUS Technology and Application”. Karlsruhe, Germany, 4.002, 2002.
- Vassis D, Kormentzas A, Rouskas A, Maglogiannis I. “The IEEE 802.11g standard for high data rate WLANs”. IEEE Network, 19(3), 21-26, 2005.
- Vitturi S, Seno F, Tramarin F, Bertocco M. “On the rate adaptation techniques of IEEE 802.11 networks for industrial applications”. IEEE Transactions on Industrial Informatics, 9(1), 198-208, 2013.
- The Institute of Electrical and Electronics Engineers. “IEEE Standards 802.11: Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications”. USA, ANSI/IEEE Std 802.11, 2006.
- OPNET. “OPNET (Riverbed) Modeler Software”. http://www.riverbed.com/products/steelcentral/steelcentral-riverbed-modeler.html (01.02.2016).
- SIEMENS. “Siemens Catalog: SIMATIC components for totally integrated automation”. Germany, ST-70, 2005.
Extending PROFIBUS segments through IEEE 802.11 wireless LAN
Year 2017,
Volume: 23 Issue: 5, 573 - 580, 20.10.2017
Cüneyt Bayılmış
,
İbrahim Özçelik
Abstract
PROFIBUS
is defined with international standards is a fieldbus standard with widespread
usage in industrial process control applications. PROFIBUS as other Fieldbus
systems has two main requirements such as extending independent PROFIBUS
segments and communicating with other LANs. To overcome these requirements the
best solution is to utilize wireless network technologies due to advantages
such as high data rates, cost and mobility etc. In this research work, the
designed PROFIBUS/IEEE 802.11g WLAN Wireless Interworking Unit (WIU) is
presented to extend PROFIBUS segment through IEEE 802.11 g WLAN. Modeling and
computer simulation of the designed WIU are performed using discrete-event
simulation technique. Performance evaluation of the Wireless Interworking Unit
is carried out according to utilization of PROFIBUS segments, end-to-end
message delay of independent PROFIBUS segments (remote) messages and WIU
process time parameters.
References
- Thomesse JP. “Fieldbus technology in industrial automation”. Proceedings of the IEEE, 93(6), 1073-1101, 2005.
- Ozcelik I, Ekiz H. “Design, implementation and performance analysis of the PROFIBUS/ATM Local Bridge”. Computer Standards & Interface, 26(4), 329-342, 2004.
- Bayilmis C, Erturk I, Ceken C, Ozcelik I. “A CAN/IEEE 802.11b wireless lan local bridge design”. Computer Standards & Interface, 30(3), 200-212, 2008.
- Cavalieri S, Pano D. “A novel solution to interconnect FieldBus systems using IEEE wireless LAN technology”. Computer Standards & Interface, 20(1), 9-23, 1998.
- Erturk I. “A new method for transferring CAN messages using wireless ATM”. Journal of Network and Computer Applications, 28(3), 45-56, 2005.
- Ozcelik I. “Interconnection of CAN segments through IEEE 802.16 wireless MAN”. Journal of Network and Computer Applications, 31 (4), 879-890, 2008.
- Koulamas C, Koubias G, Papadopulos G. “Using cut-through forwarding to retain the real-time properties of profibus over hybrid wired/wireless architectures”. IEEE Transactions on Industrial Electronics, 51(6), 1208-1217, 2004.
- Alves F. Real-Time Communications Over Hybrid Wired/Wireless PROFIBUS-Based Networks. Phd Thesis, Porto University, Porto, Portogual, 2003.
- Sousa PB, Ferreira LL. “Hybrid Wired/Wireless PROFIBUS architectures: Performance study based on simulation models”. EURASIP Journal on Wireless Communications and Networking, 2010 (1), 1-25, 2010.
- Kjellsson J, Vallestad AE, Steigmann R, Dzung D. “Integration of a wireless I/O interface for PROFIBUS and PROFINET for factory automation”. IEEE Transaction on Industrial Electronics, 56(10), 4279-4287, 2009.
- Zhong L, Liu S, Zhang X, Liang W, Zhou Y. “Interconnection technique between wireless factory automation network and PROFIBUS-DP”. 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June - 4 July 2014.
- Pellegrini F, Miorandi D, Vitturi S, Zanella A. “On the use of wireless networks at low level of factory automation systems”. IEEE Transactions on Industrial Informatics, 2 (2), 129-143, 2006.
- Willig A, Matheus K., Wolisz A. “Wireless technology in industrial networks”. Proceedings of the IEEE, 93(6), 1130-1151, 2005.
- International Electrotechnical Commission. “PROFIBUS Specification”. Switzerland, IEC 61158, 2000.
- PROFIBUS Nutzerorganisation.“PROFIBUS Brochure: PROFIBUS Technology and Application”. Karlsruhe, Germany, 4.002, 2002.
- Vassis D, Kormentzas A, Rouskas A, Maglogiannis I. “The IEEE 802.11g standard for high data rate WLANs”. IEEE Network, 19(3), 21-26, 2005.
- Vitturi S, Seno F, Tramarin F, Bertocco M. “On the rate adaptation techniques of IEEE 802.11 networks for industrial applications”. IEEE Transactions on Industrial Informatics, 9(1), 198-208, 2013.
- The Institute of Electrical and Electronics Engineers. “IEEE Standards 802.11: Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications”. USA, ANSI/IEEE Std 802.11, 2006.
- OPNET. “OPNET (Riverbed) Modeler Software”. http://www.riverbed.com/products/steelcentral/steelcentral-riverbed-modeler.html (01.02.2016).
- SIEMENS. “Siemens Catalog: SIMATIC components for totally integrated automation”. Germany, ST-70, 2005.