Research Article
BibTex RIS Cite

Enerji tüketebilen çelik yastıkların tipik bir betonarme çerçeve davranışına etkisi

Year 2017, Volume: 23 Issue: 6, 637 - 645, 15.12.2017

Abstract

Betonarme çerçeve tipi yapıların deprem
davranışları, enerji tüketebilen metal elemanlar kullanılarak
iyileştirilebilmektedir. Metal elemanlar, yapının çerçeve gözlerine
yerleştirildiğinde yapıya giren deprem enerjisini plastik deformasyon yaparak
tüketebilmektedir. Yeni nesil yapı tasarımı, plastik şekil değiştirmelerin
yapısal elemanlardan çok, deprem sonrasında yenisiyle değiştirilebilen metal
elemanlarda yoğunlaşması sağlanarak hasarının azaltılması eğilimindedir. Bu
çalışmada enerji tüketme özelliği olan farklı kalınlıklardaki yastık görünümlü
metal elemanların çevrimsel davranışı, deneysel ve analitik olarak
incelenmiştir. Farklı kalınlıklardaki çelik yastıkların kayma deneyleri
İstanbul Teknik Üniversitesi Yapı ve Deprem Mühendisliği Laboratuvarında (STEELAB)
gerçekleştirilmiştir. Çelik yastıklar için analitik model geliştirilmiş ve
gerçek betonarme yapıdan çıkartılmış bir çerçevenin lineer olmayan analizinde
kullanılmıştır. Analiz sonuçları, levha kalınlığına bağlı olarak çelik
yastıkların betonarme çerçeve dayanımını %5 ile %20 arasında değişen oranlarda
artırdığını göstermektedir. Kalınlığı 18 mm olarak seçilen çelik yastığın
kullanıldığı betonarme çerçeve yalın çerçeveden 5 kat daha fazla enerji
tüketmiştir. Aynı kalınlıktaki çelik yastık, çerçeve sistemin toplam
enerjisinin %55’ini tüketmiştir.

References

  • Kelly JM, Skinner RI and Heine AJ. “Mechanisms of energy absorption in special devices for use in earthquake resistant structures”. Bulletin of New Zealand National Society for Earthquake Engineering, 5(3), 63-88, 1972.
  • Skinner RI, Kelly JM, Heine AJ. "Hysteresis dampers for earthquake-resistant structures". Earthquake Engineering and Structural Dynamics, 3, 287-296, 1975.
  • Bergman DM, Goel SC. “Evaluation of cyclic testing of steel-plate devices for added damping and stiffness”. University of Michigan, Ann Arbor Michigan, USA, Rep. No. UMCE 87-10, 1987.
  • Tsai KC, Chen HW, Hong CP, Su YF. “Design of steel triangular plate energy absorbers for seismic resistant construction”. Earthquake Spectra, 19(3), 505-528, 1993.
  • Chan RWK, Albermani F. “Experimental study of steel slit damper for passive energy dissipation”. Engineering Structures, 30(2008), 1058-1066, 2007.
  • Chan R, Albermani F, Williams M. “Evaluation of yielding shear panel device for passive energy dissipation”. Journal of Constructional Steel Research, 65(2), 260-268, 2009.
  • Priestley MJN. “Overview of PRESSS research program”. Journal of Precast Concrete Institute, 36(4), 50-57, 1991.
  • Shultz A.E., Magana R.A. “Seismic behavior of connections in precast concrete walls”. Proceedings of Mete A. Sozen Symposium, Michigan, USA, 1996.
  • Mazzolani FM. “Innovative metal systems for seismic upgrading of RC structures”. Journal of Constructional Steel Research, 64(2008), 882-895, 2007.
  • Alehashem SMS, Keyhani A, Pourmohammad H. “Behavior and performance of structures equipped with ADAS & TADAS dampers (a Comparison with Conventional Structures)”. 14th World Conference on Earthquake Engineering, Beijing, China, 12-17 October 2008.
  • Oh SH, Kim YJ, Ryu HS. “Seismic performance of steel structures with slit dampers”. Engineering Structures, 31(9), 1997-2008, 2009.
  • Sahoo DR, Rai DC. “Seismic strengthening of non-ductile reinforced concrete frames using aluminum shear links as energy-dissipation devices”. Engineering Structures, 32(11), 3548-3557, 2010.
  • Maleki S, Bagheri, S. "Pipe damper, Part I. experimental and analytical study”. Journal of Constructional Steel Research, 66(8-9), 1088-1095, 2010.
  • Maleki S, Mahjoubi S. “Dual-pipe damper”. Journal of Constructional Steel Research, 85, 81-91, 2013.
  • Ozkaynak H, Gullu A, Gokse T, Khajehdei A, Mahdavi M, Azizisales F, Smyrou E, Bal IE, Yuksel E, Karadogan F. “Energy dissipater steel cushions”. 2nd European Conference on Earthquake Engineering and Seismology, Istanbul, Turkey, 25-29 August 2014.
  • Gullu A, Yuksel E, Karadogan F. “Experimental and analytical evaluation of special energy dissipater cushions”. 7th Abaqus Users Meeting, Istanbul, Turkey, 6-7 November 2014.
  • Karalis A, Georgiadi-Stefanidi KA, Salonikios TN, Stylianidis KC, Mistakidis ES. “Experimental and numerical study of the behaviour of high dissipation metallic devices for the strengthening of existing structures”. Proceedings of the III ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Corfu, Greece, 26-28 May 2011.
  • Colombo A, Lamperti M, Negro P, Toniolo G. “Design Guidelines for Wall Panel Connections”. Joint Research Center (JRC), Ispra, Italy, Technical Report, EUR 27934 EN, 2016.
  • FEMA-461. “Federal Management Emergency Agency, Interim Testing Protocols For Determining the Seismic Performance Characteristics of Structural and Non-structural Components”. FEMA 461, Washington, DC, 2007.
  • Jacobsen LS. “Damping in composite structures”. 2nd World Conference on Earthquake Engineering, Tokyo, Japan, 11-18 July 1960.
  • SeismoStruct-A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures. “Standard Search”. www.seismosoft.com.
  • Güllü A, Ozkaynak H, Khajehdehı A, Gökçe T, Azizisales F, Bal İE, Smyrou E, Yüksel E, Karadoğan F. “Derivation of the closed form equations for the energy dissipative steel cushions”. 14th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, San Diego, Ca USA, 9-11 September 2015.
  • Bayındırlık ve İskan Bakanlığı. “Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik 2007”. İnşaat Mühendisleri Odası İzmir Şubesi, İzmir, Türkiye, 2009.

The effect of energy dissipating steel cushions on the behaviour of a typical reinforced concrete frame

Year 2017, Volume: 23 Issue: 6, 637 - 645, 15.12.2017

Abstract

Seismic
behavior of reinforced concrete frame type structures can be improved by adding
energy dissipating metallic devices. Metal devices can dissipate the earthquake
input energy by means of plastic deformation when they are located within the
bays of the structure. New generation structural design methods tend to
concentrate the plastic deformations accumulated on replaceable steel elements
rather than on structural members and therefore decrease the damage level. In
this study, experimental and analytical investigation was conducted in order to
determine the hysteretic behaviour of energy dissipative steel cushion shaped
metal elements with variable thicknesses. Shear tests of energy dissipative
steel cushions were performed in the Structural and Earthquake Engineering
Laboratory (STEELAB) of ITU. Analytical model was developed for the steel
cushions and the model was used in the nonlinear analysis of a frame system
that was extracted from an actual model structure. The analysis results showed
that depending on the thickness, steel cushions increase the strength of the
structure in the range of 5% to 20%. 18 mm thick steel cushion instrumented
frame dissipates 5 times more energy than the bare frame. Steel cushion having
the same thickness dissipated 55% of the total energy of the frame system. 

References

  • Kelly JM, Skinner RI and Heine AJ. “Mechanisms of energy absorption in special devices for use in earthquake resistant structures”. Bulletin of New Zealand National Society for Earthquake Engineering, 5(3), 63-88, 1972.
  • Skinner RI, Kelly JM, Heine AJ. "Hysteresis dampers for earthquake-resistant structures". Earthquake Engineering and Structural Dynamics, 3, 287-296, 1975.
  • Bergman DM, Goel SC. “Evaluation of cyclic testing of steel-plate devices for added damping and stiffness”. University of Michigan, Ann Arbor Michigan, USA, Rep. No. UMCE 87-10, 1987.
  • Tsai KC, Chen HW, Hong CP, Su YF. “Design of steel triangular plate energy absorbers for seismic resistant construction”. Earthquake Spectra, 19(3), 505-528, 1993.
  • Chan RWK, Albermani F. “Experimental study of steel slit damper for passive energy dissipation”. Engineering Structures, 30(2008), 1058-1066, 2007.
  • Chan R, Albermani F, Williams M. “Evaluation of yielding shear panel device for passive energy dissipation”. Journal of Constructional Steel Research, 65(2), 260-268, 2009.
  • Priestley MJN. “Overview of PRESSS research program”. Journal of Precast Concrete Institute, 36(4), 50-57, 1991.
  • Shultz A.E., Magana R.A. “Seismic behavior of connections in precast concrete walls”. Proceedings of Mete A. Sozen Symposium, Michigan, USA, 1996.
  • Mazzolani FM. “Innovative metal systems for seismic upgrading of RC structures”. Journal of Constructional Steel Research, 64(2008), 882-895, 2007.
  • Alehashem SMS, Keyhani A, Pourmohammad H. “Behavior and performance of structures equipped with ADAS & TADAS dampers (a Comparison with Conventional Structures)”. 14th World Conference on Earthquake Engineering, Beijing, China, 12-17 October 2008.
  • Oh SH, Kim YJ, Ryu HS. “Seismic performance of steel structures with slit dampers”. Engineering Structures, 31(9), 1997-2008, 2009.
  • Sahoo DR, Rai DC. “Seismic strengthening of non-ductile reinforced concrete frames using aluminum shear links as energy-dissipation devices”. Engineering Structures, 32(11), 3548-3557, 2010.
  • Maleki S, Bagheri, S. "Pipe damper, Part I. experimental and analytical study”. Journal of Constructional Steel Research, 66(8-9), 1088-1095, 2010.
  • Maleki S, Mahjoubi S. “Dual-pipe damper”. Journal of Constructional Steel Research, 85, 81-91, 2013.
  • Ozkaynak H, Gullu A, Gokse T, Khajehdei A, Mahdavi M, Azizisales F, Smyrou E, Bal IE, Yuksel E, Karadogan F. “Energy dissipater steel cushions”. 2nd European Conference on Earthquake Engineering and Seismology, Istanbul, Turkey, 25-29 August 2014.
  • Gullu A, Yuksel E, Karadogan F. “Experimental and analytical evaluation of special energy dissipater cushions”. 7th Abaqus Users Meeting, Istanbul, Turkey, 6-7 November 2014.
  • Karalis A, Georgiadi-Stefanidi KA, Salonikios TN, Stylianidis KC, Mistakidis ES. “Experimental and numerical study of the behaviour of high dissipation metallic devices for the strengthening of existing structures”. Proceedings of the III ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Corfu, Greece, 26-28 May 2011.
  • Colombo A, Lamperti M, Negro P, Toniolo G. “Design Guidelines for Wall Panel Connections”. Joint Research Center (JRC), Ispra, Italy, Technical Report, EUR 27934 EN, 2016.
  • FEMA-461. “Federal Management Emergency Agency, Interim Testing Protocols For Determining the Seismic Performance Characteristics of Structural and Non-structural Components”. FEMA 461, Washington, DC, 2007.
  • Jacobsen LS. “Damping in composite structures”. 2nd World Conference on Earthquake Engineering, Tokyo, Japan, 11-18 July 1960.
  • SeismoStruct-A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures. “Standard Search”. www.seismosoft.com.
  • Güllü A, Ozkaynak H, Khajehdehı A, Gökçe T, Azizisales F, Bal İE, Smyrou E, Yüksel E, Karadoğan F. “Derivation of the closed form equations for the energy dissipative steel cushions”. 14th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, San Diego, Ca USA, 9-11 September 2015.
  • Bayındırlık ve İskan Bakanlığı. “Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik 2007”. İnşaat Mühendisleri Odası İzmir Şubesi, İzmir, Türkiye, 2009.
There are 23 citations in total.

Details

Subjects Engineering
Journal Section Research Article
Authors

Hasan Özkaynak 0000-0003-2880-7669

Publication Date December 15, 2017
Published in Issue Year 2017 Volume: 23 Issue: 6

Cite

APA Özkaynak, H. (2017). Enerji tüketebilen çelik yastıkların tipik bir betonarme çerçeve davranışına etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(6), 637-645.
AMA Özkaynak H. Enerji tüketebilen çelik yastıkların tipik bir betonarme çerçeve davranışına etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. December 2017;23(6):637-645.
Chicago Özkaynak, Hasan. “Enerji tüketebilen çelik yastıkların Tipik Bir Betonarme çerçeve davranışına Etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23, no. 6 (December 2017): 637-45.
EndNote Özkaynak H (December 1, 2017) Enerji tüketebilen çelik yastıkların tipik bir betonarme çerçeve davranışına etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23 6 637–645.
IEEE H. Özkaynak, “Enerji tüketebilen çelik yastıkların tipik bir betonarme çerçeve davranışına etkisi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 23, no. 6, pp. 637–645, 2017.
ISNAD Özkaynak, Hasan. “Enerji tüketebilen çelik yastıkların Tipik Bir Betonarme çerçeve davranışına Etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23/6 (December 2017), 637-645.
JAMA Özkaynak H. Enerji tüketebilen çelik yastıkların tipik bir betonarme çerçeve davranışına etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2017;23:637–645.
MLA Özkaynak, Hasan. “Enerji tüketebilen çelik yastıkların Tipik Bir Betonarme çerçeve davranışına Etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 23, no. 6, 2017, pp. 637-45.
Vancouver Özkaynak H. Enerji tüketebilen çelik yastıkların tipik bir betonarme çerçeve davranışına etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2017;23(6):637-45.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.