Research Article
BibTex RIS Cite

Lazer destekli imalatta plazma dinamiklerinin teorik ve deneysel olarak araştırılması

Year 2017, Volume: 23 Issue: 8, 1009 - 1013, 28.12.2017

Abstract

Lazer
destekli mikro-imalat (mikro kaynak, delme, yüzey yapılandırma vb…) prosesinin
kalitesi elektronik, havacılık- uzay ve biyomedikal endüstrileri için özel bir
öneme sahiptir. Lazerin oluşturduğu plazmanın dinamikleri lazer güç yoğunluğu,
ışın odak çapı ve çevre koşulları tarafından belirlenmektedir. Plazma yoğunluğunda
eşik değerine ulaşıldığında plazma korumasına bağlı ışınım kayıpları sebebiyle,
lazer enerjisi malzemeye aktarılamamaktadır. Bu ayrışma eşiği mikro-imalat
operasyonu için kritik bir role sahiptir. Bu makale kapsamında, titanyum
malzeme için plazma dinamikleri teorik ve deneysel olarak incelenmiş ve faydalı
prosess enerjisinin kaybını önlemek için optimum lazer yoğunluk eşiği rapor
edilmiş ve numerik çalışmalarla karşılaştırılmıştır. 

References

  • Mahalik NP. Micromanufacturing and Nanotechnology. Berlin-Heidelberg, Germany, Springer Verlag, 2006.
  • Feynman RP. “There is plenty of room at the bottom”. Engineering and Science, 23(5), 22–36, 1960.
  • American Society of Precision Engineering. www.aspe.net (31.10.2016)
  • Poprawe R. Lasertechnik für die Fertigung, Grundlagen Perspektiven und Beispiele für den innovation Ingenieur. Berlin-Heidelberg, Germany, Springer Verlag, 2005.
  • Lunney JG, Jordan R. “Pulsed laser ablation of metals”. Applied Surface Science, 127-129, 941-946, 1998.
  • Trtica MS, Radak BB, Gakovic BM, Milanovic DS, Batani D, Desai T. “Surface modifications of Ti6Al4V by a picosecond Nd:YAG laser”. Laser and Particle Beams, Cambridge University Press, 27, 85–90, 2009.
  • Dahotre NB, Harimkar SP. Laser Fabrication and Machining of Materials. New York, USA, Springer Verlag, 2008.
  • Chaudhuri A, Hadjadj A, Guha C, Dutta TK. Numerical Simulations of Microscale Gas Flows: Continuum Approach. Editor: Strangio MA. Recent Advances in Technologies, 121-146, InTech, 2009. Available.
  • Kannatey-Asibu E. Principles of Laser Material Processing. Hoboken, New Jersey, USA; John Wiley & Sons, Inc., 2009.
  • Hirschfelder JO, Curtiss CF, Bird RB. Molecular Theory of Gases and Liquids. New York, USA, Wiley, 1954.
  • Kelly R. “On the dual role of the Knudsen layer and unsteady, adiabatic expansion in pulse sputtering phenomena”. Journal of Chemical Physics, 92(8), 5047-5056, 1990.
  • Çelen S, Ozden H. “Laser-induced novel patterns: As smart strain actuators for new-age dental implant surfaces”. Elsevier Applied Surface Science, 263, 579-585, 2012.
  • Çelen S. “Pulsed laser-induced lotus leafs from the viewpoint of coalescence of sensors hypothesis”. 18th International Conference on Surface Modification of Materials by Ion Beams, Kuşadası, Turkey, 15-20 September 2013.
  • Çelen S. “A novel strain energy density algorithm for laser induced micro-hollows”. Elsevier Optics and Lasers in Engineering, 70, 45-50, 2015.
  • Çelen S. “CPE: Novel method to shorten the lead time for laser micro-machining”. Materials Testing, Carl Hanser Verlag GmbH & Co. KG, Berlin, 57(6), 585-588, 2015.
  • Çelen S. “On mechanism of explosive boiling in nanosecond regime”. Applied Physics B:Lasers and Optics, Springer-Verlag Berlin Heidelberg, 6, 122-168, 2016.
  • Afanas'ev YV, Krokhin ON. “Vaporization of matter exposed to laser emission”. Soviet Physics Journal of Experimental and Theoretical Physics, 25(4), 639–645, 1967.
  • Anisimov SI. “Vaporization of metal absorbing laser radiation”. Soviet Physics Journal of Experimental and Theoretical Physics, 27(1), 182-183, 1968.
  • Anisimov SI, Khokhlov VA. Instabilities in Laser–Matter Interaction. Boca Raton-FL, USA, CRC Press, 1995.
  • Olstad RA, Olander DR. “Evaporation of solids by laser pulses. I. Iron”. Journal of Applied Physics, 46(4), 1499-1508, 1975.
  • Olstad RA, Olander DR. “Evaporation of solids by laser pulses. II. Zirconium hydride”. Journal of Applied Physics, 46(4), 1509-1518, 1975.
  • Andrews JG, Attey DR. “On the motion of an intensely heated evaporating boundary”. Institute of Mathematics and its Applications (IMA) Journal of Applied Mathematics, 15(1), 59-72, 1975.
  • Andrews JG, Attey DR. “Hydrodynamic limit to penetration of a material by a high-power beam”. Journal of Physics D: Applied Physics, 9(15), 2181-2194, 1976.
  • Allmen M. “Laser drilling velocity in metals”. Journal of Applied Physics, 47, 5460-5463, 1976.
  • Knight CJ. “Theoretical modeling of rapid surface vaporization with back pressure”. American Institute of Aeronautics and Astronautics Journal, 17(5), 519-523, 1979.
  • Chan CL, Mazumder JE. “One-dimensional steady-state model for damage by vaporization and liquid expulsion due to laser-material ablation”. Journal of Applied Physics, 62(11), 4579–4586, 1987.
  • Kelly R, Dreyfus RW. “Reconsidering the mechanisms of laser sputtering with Knudsen-layer formation taken into account”. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 32(1-4), 341–348, 1988.
  • Kelly R, Dreyfus RW. “On the effect of Knudsen-layer formation on studies of vaporization, sputtering and desorption”. Surface Science, 198(1-2), 263–276, 1988.
  • Singh RK, Narayan J. “Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model”. The American Physical Society Physical Review B, 41(13), 8843–8859, 1990.
  • Aden M, Beyer E, Herziger G. “Laser-induced vaporization of metal as a Riemann problem”. Journal of Physics D: Applied Physics, 23(6), 655–661, 1990.
  • Aden M, Beyer E, Herziger G, Kunze H. “Laser-induced vaporization of a metal surface”. Journal of Physics D: Applied Physics, 25(1), 57–65, 1992.
  • Chen KR, Leboeuf JN, Wood RF, Geohegan DB, Donato JM, Liu CL, Puretzky AA. “Accelerated expansion of laser-ablated materials near a solid surface”. The American Physical Society Physical Review Letters, 75(25), 4706–4709, 1995.
  • Capewell DL, Goodwin DG. “Monte Carlo simulations of reactive pulsed laser deposition”. Proceedings of SPIE 2403 Laser-Induced Thin Film Processing, 49-59, 1995.
  • Peto G, Karacs A, Pastzi Z, Guczi L, Divinji T, Joob A. “Surface treatment of screw shaped titanium dental implants by high intensity laser pulses”. Applied Surface Science, Proceeedings of the European Materials Research Society 2001-Symposium L “Photon-Induced Surface Processing”, 186(1-4), 7–13, 2002.
  • Voisey KT, Kudesia SS, Rodden WSO ,Hand DP, Jones JDC, Clyne TW. “Melt ejection during laser drilling of metals”. Material Science and Engineering A, 356(1-2), 414–424, 2003.
  • Atrique D, Alexiades V, Khanal H. “Hydrodynamic modelling of ns-laser ablation”. Ninth MSU-UAB Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference, 20, 1-14, 2013.
  • Phipps CR Jr., Dreyfus RW. The High Laser Irradiance Regime. Editors: Vertes A, Gijbels R, Adams F. Laser Ionization Mass Analysis, 369–431, New York, USA, John Wiley and Sons, 1993.
  • Root RG. Modeling of post-breakdown phenomena. Editors: Radziemski LJ, Cremers DA. Laser-Induced Plasmas and Applications, 69-103, New York, USA, Marcel Dekker Inc., 1989.
  • Bergel'son VI, Loseva TV, Nemchinov IV, Orlova TI. “Propagation of plane supersonic radiation waves”. Soviet Journal of Plasma Physics, 1(6), 498, 1975.
  • McKay JA, Weiting TJ, French FW. “Pressure and Impulse Generation by Laser-Driven Air Plasmas at High Intensity and Short Pulse Duration”. American Institute of Aeronautics and Astronautics (AIAA) Paper, 17th Fluid Dynamics, Plasma Dynamics, and Laser Conference, Snowmass, Colo., USA, 25-27 June 1984.
  • Ding K, Ye L. Laser Shock Peening Performance And Process Simulation. Woodhead Publishing and Maney Publishing, CRC Press, 2006.

Theoretical and experimental investigation of plasma dynamics for laser-induced machining mechanism

Year 2017, Volume: 23 Issue: 8, 1009 - 1013, 28.12.2017

Abstract

The
quality of laser micro-machining process (micro welding, drilling, surface
structuring etc…) has vital importance for electronic, aviation-aerospace and
biomedical industries. Dynamics of laser-induced plasma are determined with
some parameters such as laser intensity, beam waist diameter and ambient gas
conditions. When the plasma density is limited with a threshold value, the
laser energy can not transmitted to the material due to the rarefied plasma.
This decoupling threshold has a crucial role for micro-machining operation. In
the scope of this paper, the behaviour of the plasma dynamics has been examined
both theoretically and experimentally for titanium material and optimal laser
intensity threshold was reported to prevent dissipation of beneficial process
energy and to compare numerical investigations.

References

  • Mahalik NP. Micromanufacturing and Nanotechnology. Berlin-Heidelberg, Germany, Springer Verlag, 2006.
  • Feynman RP. “There is plenty of room at the bottom”. Engineering and Science, 23(5), 22–36, 1960.
  • American Society of Precision Engineering. www.aspe.net (31.10.2016)
  • Poprawe R. Lasertechnik für die Fertigung, Grundlagen Perspektiven und Beispiele für den innovation Ingenieur. Berlin-Heidelberg, Germany, Springer Verlag, 2005.
  • Lunney JG, Jordan R. “Pulsed laser ablation of metals”. Applied Surface Science, 127-129, 941-946, 1998.
  • Trtica MS, Radak BB, Gakovic BM, Milanovic DS, Batani D, Desai T. “Surface modifications of Ti6Al4V by a picosecond Nd:YAG laser”. Laser and Particle Beams, Cambridge University Press, 27, 85–90, 2009.
  • Dahotre NB, Harimkar SP. Laser Fabrication and Machining of Materials. New York, USA, Springer Verlag, 2008.
  • Chaudhuri A, Hadjadj A, Guha C, Dutta TK. Numerical Simulations of Microscale Gas Flows: Continuum Approach. Editor: Strangio MA. Recent Advances in Technologies, 121-146, InTech, 2009. Available.
  • Kannatey-Asibu E. Principles of Laser Material Processing. Hoboken, New Jersey, USA; John Wiley & Sons, Inc., 2009.
  • Hirschfelder JO, Curtiss CF, Bird RB. Molecular Theory of Gases and Liquids. New York, USA, Wiley, 1954.
  • Kelly R. “On the dual role of the Knudsen layer and unsteady, adiabatic expansion in pulse sputtering phenomena”. Journal of Chemical Physics, 92(8), 5047-5056, 1990.
  • Çelen S, Ozden H. “Laser-induced novel patterns: As smart strain actuators for new-age dental implant surfaces”. Elsevier Applied Surface Science, 263, 579-585, 2012.
  • Çelen S. “Pulsed laser-induced lotus leafs from the viewpoint of coalescence of sensors hypothesis”. 18th International Conference on Surface Modification of Materials by Ion Beams, Kuşadası, Turkey, 15-20 September 2013.
  • Çelen S. “A novel strain energy density algorithm for laser induced micro-hollows”. Elsevier Optics and Lasers in Engineering, 70, 45-50, 2015.
  • Çelen S. “CPE: Novel method to shorten the lead time for laser micro-machining”. Materials Testing, Carl Hanser Verlag GmbH & Co. KG, Berlin, 57(6), 585-588, 2015.
  • Çelen S. “On mechanism of explosive boiling in nanosecond regime”. Applied Physics B:Lasers and Optics, Springer-Verlag Berlin Heidelberg, 6, 122-168, 2016.
  • Afanas'ev YV, Krokhin ON. “Vaporization of matter exposed to laser emission”. Soviet Physics Journal of Experimental and Theoretical Physics, 25(4), 639–645, 1967.
  • Anisimov SI. “Vaporization of metal absorbing laser radiation”. Soviet Physics Journal of Experimental and Theoretical Physics, 27(1), 182-183, 1968.
  • Anisimov SI, Khokhlov VA. Instabilities in Laser–Matter Interaction. Boca Raton-FL, USA, CRC Press, 1995.
  • Olstad RA, Olander DR. “Evaporation of solids by laser pulses. I. Iron”. Journal of Applied Physics, 46(4), 1499-1508, 1975.
  • Olstad RA, Olander DR. “Evaporation of solids by laser pulses. II. Zirconium hydride”. Journal of Applied Physics, 46(4), 1509-1518, 1975.
  • Andrews JG, Attey DR. “On the motion of an intensely heated evaporating boundary”. Institute of Mathematics and its Applications (IMA) Journal of Applied Mathematics, 15(1), 59-72, 1975.
  • Andrews JG, Attey DR. “Hydrodynamic limit to penetration of a material by a high-power beam”. Journal of Physics D: Applied Physics, 9(15), 2181-2194, 1976.
  • Allmen M. “Laser drilling velocity in metals”. Journal of Applied Physics, 47, 5460-5463, 1976.
  • Knight CJ. “Theoretical modeling of rapid surface vaporization with back pressure”. American Institute of Aeronautics and Astronautics Journal, 17(5), 519-523, 1979.
  • Chan CL, Mazumder JE. “One-dimensional steady-state model for damage by vaporization and liquid expulsion due to laser-material ablation”. Journal of Applied Physics, 62(11), 4579–4586, 1987.
  • Kelly R, Dreyfus RW. “Reconsidering the mechanisms of laser sputtering with Knudsen-layer formation taken into account”. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 32(1-4), 341–348, 1988.
  • Kelly R, Dreyfus RW. “On the effect of Knudsen-layer formation on studies of vaporization, sputtering and desorption”. Surface Science, 198(1-2), 263–276, 1988.
  • Singh RK, Narayan J. “Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model”. The American Physical Society Physical Review B, 41(13), 8843–8859, 1990.
  • Aden M, Beyer E, Herziger G. “Laser-induced vaporization of metal as a Riemann problem”. Journal of Physics D: Applied Physics, 23(6), 655–661, 1990.
  • Aden M, Beyer E, Herziger G, Kunze H. “Laser-induced vaporization of a metal surface”. Journal of Physics D: Applied Physics, 25(1), 57–65, 1992.
  • Chen KR, Leboeuf JN, Wood RF, Geohegan DB, Donato JM, Liu CL, Puretzky AA. “Accelerated expansion of laser-ablated materials near a solid surface”. The American Physical Society Physical Review Letters, 75(25), 4706–4709, 1995.
  • Capewell DL, Goodwin DG. “Monte Carlo simulations of reactive pulsed laser deposition”. Proceedings of SPIE 2403 Laser-Induced Thin Film Processing, 49-59, 1995.
  • Peto G, Karacs A, Pastzi Z, Guczi L, Divinji T, Joob A. “Surface treatment of screw shaped titanium dental implants by high intensity laser pulses”. Applied Surface Science, Proceeedings of the European Materials Research Society 2001-Symposium L “Photon-Induced Surface Processing”, 186(1-4), 7–13, 2002.
  • Voisey KT, Kudesia SS, Rodden WSO ,Hand DP, Jones JDC, Clyne TW. “Melt ejection during laser drilling of metals”. Material Science and Engineering A, 356(1-2), 414–424, 2003.
  • Atrique D, Alexiades V, Khanal H. “Hydrodynamic modelling of ns-laser ablation”. Ninth MSU-UAB Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference, 20, 1-14, 2013.
  • Phipps CR Jr., Dreyfus RW. The High Laser Irradiance Regime. Editors: Vertes A, Gijbels R, Adams F. Laser Ionization Mass Analysis, 369–431, New York, USA, John Wiley and Sons, 1993.
  • Root RG. Modeling of post-breakdown phenomena. Editors: Radziemski LJ, Cremers DA. Laser-Induced Plasmas and Applications, 69-103, New York, USA, Marcel Dekker Inc., 1989.
  • Bergel'son VI, Loseva TV, Nemchinov IV, Orlova TI. “Propagation of plane supersonic radiation waves”. Soviet Journal of Plasma Physics, 1(6), 498, 1975.
  • McKay JA, Weiting TJ, French FW. “Pressure and Impulse Generation by Laser-Driven Air Plasmas at High Intensity and Short Pulse Duration”. American Institute of Aeronautics and Astronautics (AIAA) Paper, 17th Fluid Dynamics, Plasma Dynamics, and Laser Conference, Snowmass, Colo., USA, 25-27 June 1984.
  • Ding K, Ye L. Laser Shock Peening Performance And Process Simulation. Woodhead Publishing and Maney Publishing, CRC Press, 2006.
There are 41 citations in total.

Details

Subjects Engineering
Journal Section Özel Sayı
Authors

Serap Çelen 0000-0001-8096-3277

Publication Date December 28, 2017
Published in Issue Year 2017 Volume: 23 Issue: 8

Cite

APA Çelen, S. (2017). Lazer destekli imalatta plazma dinamiklerinin teorik ve deneysel olarak araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(8), 1009-1013.
AMA Çelen S. Lazer destekli imalatta plazma dinamiklerinin teorik ve deneysel olarak araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. December 2017;23(8):1009-1013.
Chicago Çelen, Serap. “Lazer Destekli Imalatta Plazma Dinamiklerinin Teorik Ve Deneysel Olarak araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23, no. 8 (December 2017): 1009-13.
EndNote Çelen S (December 1, 2017) Lazer destekli imalatta plazma dinamiklerinin teorik ve deneysel olarak araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23 8 1009–1013.
IEEE S. Çelen, “Lazer destekli imalatta plazma dinamiklerinin teorik ve deneysel olarak araştırılması”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 23, no. 8, pp. 1009–1013, 2017.
ISNAD Çelen, Serap. “Lazer Destekli Imalatta Plazma Dinamiklerinin Teorik Ve Deneysel Olarak araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23/8 (December 2017), 1009-1013.
JAMA Çelen S. Lazer destekli imalatta plazma dinamiklerinin teorik ve deneysel olarak araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2017;23:1009–1013.
MLA Çelen, Serap. “Lazer Destekli Imalatta Plazma Dinamiklerinin Teorik Ve Deneysel Olarak araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 23, no. 8, 2017, pp. 1009-13.
Vancouver Çelen S. Lazer destekli imalatta plazma dinamiklerinin teorik ve deneysel olarak araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2017;23(8):1009-13.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.