Research Article
BibTex RIS Cite

Betonarme elemanlarda donatı burkulmasının kafes kiriş analojisi ile sayısal modellenmesi

Year 2018, Volume: 24 Issue: 3, 384 - 389, 29.06.2018

Abstract

Deprem kuşağında yer alan
bölgelerdeki betonarme yapılar, sismik performans hedeflerini sağlamak üzere
tasarlanır. Betonarme elemanların uç bölgelerinde, boyuna donatılarda
burkulmaya bağlı yanal şekil değiştirmeler gelişebilir. Betonarme yapıların
performansa dayalı değerlendirilmesi doğrusal olmayan davranış üzerinde donatı
burkulma etkilerini hesaba katan analitik modellere dayalı olmalıdır. Bu
çalışmada, literatürde yer alan doğrusal olmayan kafes modelleme yaklaşımı
donatı burkulmasından etkilenen betonarme elemanlar için genişletilmiştir.
Doğrusal olmayan kafes kiriş modeli basınç etkisi altında diyagonal elemanlarda
çift eksenli etkileri, yatay ve düşey beton elemanlarda ise çekme güçlenmesini
dikkate almaktadır. Donatıları temsil eden kafes elemanlar, elastik olmayan
burkulma ve kopmayı açık şekilde hesaba katan tek eksenli bir malzeme modeli
ile tanımlanmıştır. Sunulan çalışmada, modelleme yaklaşımı bir betonarme kiriş
testi sonuçları ile doğrulanmış ve sonlu eleman boyut değişiminin modeldeki
etkileri araştırılmıştır. Sayısal model moment-ötelenme oranı ilişkisindeki
dayanım azalmasını deney sonuçlarıyla uyumlu olarak hesaplamıştır.

References

  • Moehle J. Seismic Design of Reinforced Concrete Buildings. New York, USA, McGraw Hill Professional 2014.
  • Monti G, Nuti C. “Nonlinear behaviour of reinforcing bars including buckling”. Journal of Structural Engineering, 118 (12), 3268-3284, 1992.
  • Gomes A., Appleton J. “Nonlinear cyclic stress-strain relationship of reinforcing bar including buckling”. Engineering Structures, 19(10), 822-826, 1997.
  • Rodriguez ME, Botero, JC, Villa J. “Cyclic stress-strain behavior of reinforcing steel including effect of buckling”. Journal of Structural Engineering, 125(6), 605-612, 1999.
  • Zong Z, Kunnath S, Monti G. “Simulation of reinforcing bar buckling in circular reinforced concrete columns”. ACI Structural Journal, 110(4), 607-616, 2013.
  • Massone LM, Lopez EE. “Modeling of reinforcement global buckling in RC elements”. Engineering Structures,59, 484-494, 2014.
  • Feng Y, Kowalsky MJ, Nau JM. “Finite-element method to predict reinforcing bar buckling in RC structures”. Journal of Structural Engineering, 141(5), 04014147 (1-12), 2015.
  • Kashani MM, Lowes NL, Crewe AJ, Alexander NA. “Nonlinear fibre element modelling of RC bridge piers considering inelastic buckling of reinforcement”. Engineering Structures, 116, 163-177, 2016.
  • Kim SE, Koutromanos I. “Constitutive model for reinforcing steel under cyclic loading”. Journal of Structural Engineering, 142(12), 04016133, 2016.
  • Dodd LL, Restrepo-Posada JI. “Model for predicting cyclic behavior of reinforcing steel”. ASCE Journal of Structural Engineering, 121(3), 433-445, 1995.
  • Kim, JH, Mander JB. “Truss Modeling of Reinforced Concrete Shear-Flexure Behavior”. University at Buffalo, State University of New York, USA, MCEER Report 99-0005, 1999.
  • Miki T, Niwa J. “Nonlinear analysis of RC structural members using 3D lattice model”. Journal of Advanced Concrete Technology, 2(3), 343-358, 2004.
  • Park H, Eom T. “Truss model for nonlinear analysis of RC members subject to cyclic loading”. Journal of Structural Engineering, 133(10), 1351-1363. 2007.
  • Panagiotou M, Restrepo JI, Schoettler M, Kim G. “Nonlinear cyclic truss model for reinforced concrete walls”. ACI Structural Journal, 109(2), 205-214, 2012.
  • Lu Y, Panagiotou M. “Three-dimensional cyclic beam-truss model for non-planar reinforced concrete walls”. Journal of Structural Engineering, 140(3), 04013071 (1-11), 2014.
  • Moharrami M, Koutromanos I, Panagiotou M, Girgin SC. “Analysis of shear-dominated RC columns using the nonlinear truss analogy”. Earthquake Engineering Structural Dynamics, 44(5), 677-694, 2015.
  • Lu Yuan, Marios Panagiotou, Ioannis Koutromanos. “Three-Dimensional Beam-Truss Model for Reinforced-Concrete Walls and Slabs Subjected to Cyclic Static or Dynamic Loading” Earthquake Engineering Research Center, University of California, Berkeley, No. UCB/ PEER, 18, 2014.
  • Zhao J, Sritharan S. “Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures”. ACI Structural Journal, 96(1), 29-39, 2007.
  • Girgin SC, Koutromanos I, Moharrami M. “Numerical simulation of reinforced concrete members with reinforcing bar buckling”. 12th International Congress on Advances on Civil Engineering, Istanbul, Turkey, 21-23 September 2016.
  • Dhakal RP, Maekawa K. “Reinforcement stability and fracture of cover concrete in reinforced concrete members”. Journal of Structural Engineering, 128(10), 1253-1262, 2002.
  • Stevens NJ, Uzumeri SM, Collins MP, Will TG. “Constitutive model for reinforced concrete finite element analysis”. ACI Structural Journal, 88(1), 49-59, 1991.
  • Vecchio FG, Collins MP. “The modified compression field theory for reinforced concrete elements subjected to shear”. Journal of the American Concrete Institute, 83(2), 219-231, 1986.
  • Visnjic T, Antonellis G, Panagiotou M and Moehle JP. “Large reinforced concrete special moment frames under simulated seismic loading”. ACI Structural Journal, 113(3), 469-480, 2016.
  • McKenna F, Fenves GL, Scott MH, Jeremic B. “Open System for Earthquake Engineering Simulation”. http://opensees.berkeley.edu, (2015).

Numerical modeling of rebar buckling in reinforced concrete members using truss analogy

Year 2018, Volume: 24 Issue: 3, 384 - 389, 29.06.2018

Abstract

Reinforced
concrete (RC) structures in earthquake prone regions are designed to achieve
the seismic performance objectives. In end regions of RC members, longitudinal
reinforcing bars may develop buckling due to high compressive strains under
reversed cyclic loadings. The performance based assessment for RC structures
should rely on analytical models which can account for the effect of rebar
buckling on the nonlinear response. This study extends a previously proposed
nonlinear truss modeling approach for modeling RC elements whose response is
affected by rebar buckling. Nonlinear truss model includes diagonal truss
elements accounting for biaxial effects in compression and tension stiffening
for concrete elements in the horizontal and vertical directions. The truss
elements representing reinforcing steel are provided with a uniaxial material
model which can explicitly account for inelastic buckling and fracture of
rebars. The modeling approach is validated with experimental test results on
one RC beam considering mesh size effects on the response. Numerical model
computed strength degradation in moment-drift ratio response of the beam in
accordance with the experimental results.

References

  • Moehle J. Seismic Design of Reinforced Concrete Buildings. New York, USA, McGraw Hill Professional 2014.
  • Monti G, Nuti C. “Nonlinear behaviour of reinforcing bars including buckling”. Journal of Structural Engineering, 118 (12), 3268-3284, 1992.
  • Gomes A., Appleton J. “Nonlinear cyclic stress-strain relationship of reinforcing bar including buckling”. Engineering Structures, 19(10), 822-826, 1997.
  • Rodriguez ME, Botero, JC, Villa J. “Cyclic stress-strain behavior of reinforcing steel including effect of buckling”. Journal of Structural Engineering, 125(6), 605-612, 1999.
  • Zong Z, Kunnath S, Monti G. “Simulation of reinforcing bar buckling in circular reinforced concrete columns”. ACI Structural Journal, 110(4), 607-616, 2013.
  • Massone LM, Lopez EE. “Modeling of reinforcement global buckling in RC elements”. Engineering Structures,59, 484-494, 2014.
  • Feng Y, Kowalsky MJ, Nau JM. “Finite-element method to predict reinforcing bar buckling in RC structures”. Journal of Structural Engineering, 141(5), 04014147 (1-12), 2015.
  • Kashani MM, Lowes NL, Crewe AJ, Alexander NA. “Nonlinear fibre element modelling of RC bridge piers considering inelastic buckling of reinforcement”. Engineering Structures, 116, 163-177, 2016.
  • Kim SE, Koutromanos I. “Constitutive model for reinforcing steel under cyclic loading”. Journal of Structural Engineering, 142(12), 04016133, 2016.
  • Dodd LL, Restrepo-Posada JI. “Model for predicting cyclic behavior of reinforcing steel”. ASCE Journal of Structural Engineering, 121(3), 433-445, 1995.
  • Kim, JH, Mander JB. “Truss Modeling of Reinforced Concrete Shear-Flexure Behavior”. University at Buffalo, State University of New York, USA, MCEER Report 99-0005, 1999.
  • Miki T, Niwa J. “Nonlinear analysis of RC structural members using 3D lattice model”. Journal of Advanced Concrete Technology, 2(3), 343-358, 2004.
  • Park H, Eom T. “Truss model for nonlinear analysis of RC members subject to cyclic loading”. Journal of Structural Engineering, 133(10), 1351-1363. 2007.
  • Panagiotou M, Restrepo JI, Schoettler M, Kim G. “Nonlinear cyclic truss model for reinforced concrete walls”. ACI Structural Journal, 109(2), 205-214, 2012.
  • Lu Y, Panagiotou M. “Three-dimensional cyclic beam-truss model for non-planar reinforced concrete walls”. Journal of Structural Engineering, 140(3), 04013071 (1-11), 2014.
  • Moharrami M, Koutromanos I, Panagiotou M, Girgin SC. “Analysis of shear-dominated RC columns using the nonlinear truss analogy”. Earthquake Engineering Structural Dynamics, 44(5), 677-694, 2015.
  • Lu Yuan, Marios Panagiotou, Ioannis Koutromanos. “Three-Dimensional Beam-Truss Model for Reinforced-Concrete Walls and Slabs Subjected to Cyclic Static or Dynamic Loading” Earthquake Engineering Research Center, University of California, Berkeley, No. UCB/ PEER, 18, 2014.
  • Zhao J, Sritharan S. “Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures”. ACI Structural Journal, 96(1), 29-39, 2007.
  • Girgin SC, Koutromanos I, Moharrami M. “Numerical simulation of reinforced concrete members with reinforcing bar buckling”. 12th International Congress on Advances on Civil Engineering, Istanbul, Turkey, 21-23 September 2016.
  • Dhakal RP, Maekawa K. “Reinforcement stability and fracture of cover concrete in reinforced concrete members”. Journal of Structural Engineering, 128(10), 1253-1262, 2002.
  • Stevens NJ, Uzumeri SM, Collins MP, Will TG. “Constitutive model for reinforced concrete finite element analysis”. ACI Structural Journal, 88(1), 49-59, 1991.
  • Vecchio FG, Collins MP. “The modified compression field theory for reinforced concrete elements subjected to shear”. Journal of the American Concrete Institute, 83(2), 219-231, 1986.
  • Visnjic T, Antonellis G, Panagiotou M and Moehle JP. “Large reinforced concrete special moment frames under simulated seismic loading”. ACI Structural Journal, 113(3), 469-480, 2016.
  • McKenna F, Fenves GL, Scott MH, Jeremic B. “Open System for Earthquake Engineering Simulation”. http://opensees.berkeley.edu, (2015).
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Sadık Can Girgin 0000-0002-5224-3122

Publication Date June 29, 2018
Published in Issue Year 2018 Volume: 24 Issue: 3

Cite

APA Girgin, S. C. (2018). Numerical modeling of rebar buckling in reinforced concrete members using truss analogy. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(3), 384-389.
AMA Girgin SC. Numerical modeling of rebar buckling in reinforced concrete members using truss analogy. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. June 2018;24(3):384-389.
Chicago Girgin, Sadık Can. “Numerical Modeling of Rebar Buckling in Reinforced Concrete Members Using Truss Analogy”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24, no. 3 (June 2018): 384-89.
EndNote Girgin SC (June 1, 2018) Numerical modeling of rebar buckling in reinforced concrete members using truss analogy. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24 3 384–389.
IEEE S. C. Girgin, “Numerical modeling of rebar buckling in reinforced concrete members using truss analogy”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 24, no. 3, pp. 384–389, 2018.
ISNAD Girgin, Sadık Can. “Numerical Modeling of Rebar Buckling in Reinforced Concrete Members Using Truss Analogy”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24/3 (June 2018), 384-389.
JAMA Girgin SC. Numerical modeling of rebar buckling in reinforced concrete members using truss analogy. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24:384–389.
MLA Girgin, Sadık Can. “Numerical Modeling of Rebar Buckling in Reinforced Concrete Members Using Truss Analogy”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 24, no. 3, 2018, pp. 384-9.
Vancouver Girgin SC. Numerical modeling of rebar buckling in reinforced concrete members using truss analogy. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24(3):384-9.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif