Araştırma Makalesi
BibTex RIS Kaynak Göster

İçerisinde dairesel halkalar bulunan bir boruda nanoakışkanların pulsatif akışının ısı transferine etkisinin parametrik incelenmesi

Yıl 2018, Cilt: 24 Sayı: 4, 597 - 604, 17.08.2018

Öz

Bu
çalışmada, içerisine dairesel halkalar yerleştirilmiş olan bir boruda laminer
pulsatif akış giriş şartlarında nanoakışkanların ısı transferi ve sürtünme
faktörüne etkileri sayısal olarak incelenmiştir. Çalışmalarda korunum
denklemleri, FLUENT ANSYS 15.0 paket programı kullanılarak, tariflenen sınır
şartlar için sonlu hacim metodu (SHM) ile ayrıklaştırılmış ve SIMPLE
algoritması kullanılarak çözülmüştür. İlk olarak farklı Reynolds sayılarında ve
değişen partikül hacim oranlarındaki farklı nanoakışkan tiplerinin sürekli akış
şartlarında ısı transferine etkileri analiz edilmiştir. Daha sonra en iyi ısı
transferi sağlayan bu nanoakışkan parametreleri sabit tutularak
nanoakışkanların pulsatif akışının ısı transferine etkileri araştırılmıştır.
Farklı pulsatif parametreler için ortalama Nusselt sayısı ve ortalama sürtünme
faktörü hesaplanmıştır. Sayısal sonuçlar sürekli akış durumunda Reynolds
sayısının ve partikül hacim oranının artması ile ısı transferinin iyileştiğini
göstermiştir. Ayrıca nanoakışkanların pulsatif akışı durumunda pulsatif
parametrelerin artması ile sürtünme faktöründe bir miktar artış ile birlikte
ısı transferinde iyileşme sağlandığı gözlemlenmiştir. Elde edilen sonuçlar,
içerisinde dairesel halkalar bulunan bir boruda nanoakışkanların pulsatif
akışının ısı transferi iyileşmesinde önemli bir potansiyele sahip olduğunu
göstermiştir.

Kaynakça

  • Akdag U, Akcay S, Demiral D. “Heat transfer enhancement with laminar pulsating nanofluid flow in a wavy channel”. International Communications in Heat and Mass Transfer, 59, 17-23, 2014.
  • Khoshvaght-Aliabadi M, Sahamiyan M, Hesampour M, Sartipzadeh O. “Experimental study on cooling performance of sinusoidal-wavy minichannel heat sink”. Applied Thermal Engineering, 92, 50-61,2016.
  • Akbarzadeh M, Rashidi S, EsfahaniJ A. “Influences of corrugation profiles on entropy generation, heat transfer, pressure drop and performance in a wavy channel”. Applied Thermal Engineering, 116, 278-291, 2017.
  • Chandra PR, Alexander VR, Han JC. “Heat transfer and friction behavior in rectangular channels with varying number of ribbed walls”. International Journal Heat and Mass Transfer,46, 481-495, 2003.
  • Promvonge P, Eiamsa-ard S. “Heat transfer and turbulent flow friction in a circular tube fitted with conical-nozzle turbulators”. International Communications in Heat and Mass Transfer, 34(1), 72-82, 2007.
  • Kongkaitpaiboon V, Nanan K, Eiamsa-ard S. “Experimental investigation of convective heat transfer and pressure loss in a round tube fitted with circular-ring turbulators”. International Communications in Heat and Mass Transfer, 37(5), 568-574, 2010.
  • Pathipakka G, Sivashanmugam P, “Heat transfer behaviour of nanofluids in a uniformly heated circular tube fitted with helical inserts in laminar flow”. Superlatt. Microstruct. 47(2), 349-360, 2010.
  • Tanda G. “Effect of rib spacing on heat transfer and friction in a rectangular channel with 45° angled rib turbulator on one/two walls”. International Journal Heat and Mass Transfer, 54(5-6), 1081-1090, 2011.
  • Promvonge P, Khanoknaiyakarn C, Kwankaomeng S, Thianpong C. “Thermal behavior in solar air heater channel fitted with combined rib and delta-winglet”. International Communications in Heat and Mass Transfer, 38(6), 749-756, 2011.
  • García A, Solano JP, Vicente PG, Viedma A. “The influence of artificial roughness shape on heat transfer enhancement: Corrugated tubes, dimpled tubes and wire coils”. Applied Thermal Engineering, 35, 196-201, 2012.
  • Skullong S, Kwankaomeng S, Thianpong C, Promvonge P. “Thermal performance of turbulent flow in a solar air heater channel with rib-groove turbulators”. International Communications in Heat and Mass Transfer, 50, 34-43, 2014.
  • Alam T, Saini RP, Saini JS. “Use of turbulators for heat transfer augmentation in an air duct-a review”. Renew Energy, 62, 689-715, 2014.
  • Tamna S, Kaewkohkiat Y, Skullong S, Promvonge P. “Heat transfer enhancement in tubular heat exchanger with double V-ribbed twisted-tapes”. Case Studies in Thermal Engineering, 7, 14-24, 2016.
  • Saysroy A, Eiamsa-ard S. “Periodically fully-developed heat and fluid flow behaviors in a turbulent tube flow with square-cut twisted tape inserts”. Applied Thermal Engineering, 112, 895-910, 2017.
  • Ozceyhan V, Gunes S, Buyukalaca O, Altuntop N. “Heat transfer enhancement in a tube using circular cross sectional rings separated from wall”. Applied Energy, 85(10), 988-1001, 2008.
  • Gunes S, Ozceyhan V, Buyukalaca O. “The experimental investigation of heat transfer and pressure drop in a tube with coiled wire inserts placed separately from the tube wall”. Applied Thermal Engineering, 30(13), 1719-1725, 2010.
  • Sheikholeslami M, Gorji-Bandpy M, Ganji DD. “Effect of discontinuous helical turbulators on heat transfer characteristics of double pipe water to air heat exchanger”. Energy Conversion and Management, 118, 75-87, 2016.
  • Keklikcioglu O, Ozceyhan V. “Experimental investigation on heat transfer enhancement of a tube with coiled-wire inserts installed with a separation from the tube wall”. International Communications in Heat and Mass Transfer, 78, 88-94, 2016.
  • Jasiński PB. “Numerical study of thermo-hydraulic characteristics in a circular tube with ball turbulators. Part 3: Thermal performance analysis”. International Journal of Heat and Mass Transfer, 107, 1138-1147, 2017.
  • Chingtuaythong W, Promvonge P, Thianpong C, Pimsarn M. “Heat transfer characterization in a tubular heat exchanger with V-shaped rings”. Applied Thermal Engineering, 110, 1164-1171, 2017.
  • Chang SW, Yu KC, Huang KC. “Thermal performances of tubular flows enhanced by twin and four spiky twisted fins on rod”. Applied Thermal Engineering, 112(5), 45-60, 2017.
  • Sharma KV, Sundar LS, Sarma PK. “Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert”. International Communications in Heat and Mass Transfer, 36(5), 503-507, 2009.
  • Sundar LS, Sharma KV. “Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts”. International Journal Heat and Mass Transfer, 53(7-8), 1409-1416, 2010.
  • Chandrasekar M, Suresh S, Bose AC. “Experimental studies Al2O3/water nanofluid in a circular pipe under laminar flow with wire coil inserts”. Experimental Thermal Fluid Science, 34(2), 122-130, 2010.on heat transfer and friction factor characteristics of
  • Sundar LS, Kumar NTR, Naik MT, Sharma KV. “Effect of full length twisted tape inserts on heat transfer and friction factor enhancement with Fe3O4 magnetic nanofluid inside a plain tube: An experimental study”. International Journal of Heat and Mass Transfer, 55(11-12), 2761-2768, 2012.
  • Azmi WH, Sharma KV, Sarma PK, Mamat R. Anuar S. Sundar LS. “Numerical validation of experimental heat transfer coefficient with SiO2 nanofluid flowing in a tube with twisted tape inserts”. Applied Thermal Engineering, 73(1), 296-306, 2014.
  • Yangı Y, Tango H, Zen B, Jean M. “Numerical Simulation and optimisation of turbulent nanofluids in a three-dimensional arc rib-grooved channel”. Numerical Heat Transfer, Part A: Applications, An International Journal of Computation and Methodology, 70(8), 831-846,2016.
  • Eiamsa-Ard S, Wongcharee K. “Experimental study of TiO2-water nanofluid flow in corrugated tubes mounted with semi-circular wing tapes”. Heat Transfer Engineering, 39(1), 1-14, 2018.
  • ANSYS Fluent user guide & theory guide- Release 15.0, Fluent Ansys Inc, USA, 2015.
  • Pak BC, Cho YI. “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles”. Experimental Heat Transfer, 11(2),151-170, 1998.
  • Nasiri M, Etemad SGh, Bagheri R. “Experimental heat transfer of nanofluid through an annular duct”. International Communications in Heat and Mass Transfer, 38(7), 958-963, 2011.
  • HaghshenasFard M, Esfahany MN, Talaie MR. “Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model”. International Communications in Heat and Mass Transfer, 37(1), 91-97, 2010.
  • Minea AA. “Effect of microtube length on heat transfer enhancement of a water/Al2O3 nanofluid at high Reynolds numbers”. International Journal Heat and Mass Transfer, 62, 22-30, 2013.
  • Kakac S, Pramuanjaroenkij A. “Review of convective heat transfer enhancement with nanofluids”. International Journal Heat and Mass Transfer, 52(13-14), 3187-3196, 2009.
  • Meyer JP, Abolarin SM. “Heat transfer and pressure drop in the transitional flow regime for a smooth circular tube with twisted tape inserts and a square-edged inlet”. International Journal of Heat and Mass Transfer, 117, 11-29, 2018.
  • Wang L, Sunden B. “Performance comparison of some tube inserts”. International Communications Heat and Mass Transfer, 29(1), 45-56, 2002.
  • Zontul H, Kurtulmuş N, Şahin B. “Pulsating flow and heat transfer in wavy channel with zero degree phase shift”. European Mechanical Science, 1(1), 31-38, 2017.

Parametric investigation of effect on heat transfer of pulsating flow of nanofluids in a tube using circular rings

Yıl 2018, Cilt: 24 Sayı: 4, 597 - 604, 17.08.2018

Öz

In
this study, the heat transfer characteristics and friction factor of nanofluids
under laminar pulsating inlet flow conditions in a tube with circular rings are
investigated numerically. In investigations, the governing equations are solved
with FLUENT ANSYS 15.0 package program, along with boundary conditions using
the finite volume approach (FVM) by SIMPLE algorithm. Firstly, the effects on
heat transfer of different nanofluid types with varying particle volume
fractions and Reynolds numbers under steady flow conditions are analyzed. Then,
these nanofluids parameters are kept constant and the effects on heat transfer
under pulsating flow conditions of nanofluids are investigated. The average
Nusselt number and friction factor are calculated for different pulsating
parameters. The numerical results indicate that the heat transfer performance
enhances with increase in particle volume fraction and Reynolds number in steady
regime. It is observed that the heat transfer performance increases with
increasing pulsating amplitude in pulsating nanofluid flow, and there is a
slightly increase in pressure drop. The computed results reveal that there is a
good potential in promoting the heat transfer enhancement by using the
nanoparticles under pulsating flow in a tube with circular rings.

Kaynakça

  • Akdag U, Akcay S, Demiral D. “Heat transfer enhancement with laminar pulsating nanofluid flow in a wavy channel”. International Communications in Heat and Mass Transfer, 59, 17-23, 2014.
  • Khoshvaght-Aliabadi M, Sahamiyan M, Hesampour M, Sartipzadeh O. “Experimental study on cooling performance of sinusoidal-wavy minichannel heat sink”. Applied Thermal Engineering, 92, 50-61,2016.
  • Akbarzadeh M, Rashidi S, EsfahaniJ A. “Influences of corrugation profiles on entropy generation, heat transfer, pressure drop and performance in a wavy channel”. Applied Thermal Engineering, 116, 278-291, 2017.
  • Chandra PR, Alexander VR, Han JC. “Heat transfer and friction behavior in rectangular channels with varying number of ribbed walls”. International Journal Heat and Mass Transfer,46, 481-495, 2003.
  • Promvonge P, Eiamsa-ard S. “Heat transfer and turbulent flow friction in a circular tube fitted with conical-nozzle turbulators”. International Communications in Heat and Mass Transfer, 34(1), 72-82, 2007.
  • Kongkaitpaiboon V, Nanan K, Eiamsa-ard S. “Experimental investigation of convective heat transfer and pressure loss in a round tube fitted with circular-ring turbulators”. International Communications in Heat and Mass Transfer, 37(5), 568-574, 2010.
  • Pathipakka G, Sivashanmugam P, “Heat transfer behaviour of nanofluids in a uniformly heated circular tube fitted with helical inserts in laminar flow”. Superlatt. Microstruct. 47(2), 349-360, 2010.
  • Tanda G. “Effect of rib spacing on heat transfer and friction in a rectangular channel with 45° angled rib turbulator on one/two walls”. International Journal Heat and Mass Transfer, 54(5-6), 1081-1090, 2011.
  • Promvonge P, Khanoknaiyakarn C, Kwankaomeng S, Thianpong C. “Thermal behavior in solar air heater channel fitted with combined rib and delta-winglet”. International Communications in Heat and Mass Transfer, 38(6), 749-756, 2011.
  • García A, Solano JP, Vicente PG, Viedma A. “The influence of artificial roughness shape on heat transfer enhancement: Corrugated tubes, dimpled tubes and wire coils”. Applied Thermal Engineering, 35, 196-201, 2012.
  • Skullong S, Kwankaomeng S, Thianpong C, Promvonge P. “Thermal performance of turbulent flow in a solar air heater channel with rib-groove turbulators”. International Communications in Heat and Mass Transfer, 50, 34-43, 2014.
  • Alam T, Saini RP, Saini JS. “Use of turbulators for heat transfer augmentation in an air duct-a review”. Renew Energy, 62, 689-715, 2014.
  • Tamna S, Kaewkohkiat Y, Skullong S, Promvonge P. “Heat transfer enhancement in tubular heat exchanger with double V-ribbed twisted-tapes”. Case Studies in Thermal Engineering, 7, 14-24, 2016.
  • Saysroy A, Eiamsa-ard S. “Periodically fully-developed heat and fluid flow behaviors in a turbulent tube flow with square-cut twisted tape inserts”. Applied Thermal Engineering, 112, 895-910, 2017.
  • Ozceyhan V, Gunes S, Buyukalaca O, Altuntop N. “Heat transfer enhancement in a tube using circular cross sectional rings separated from wall”. Applied Energy, 85(10), 988-1001, 2008.
  • Gunes S, Ozceyhan V, Buyukalaca O. “The experimental investigation of heat transfer and pressure drop in a tube with coiled wire inserts placed separately from the tube wall”. Applied Thermal Engineering, 30(13), 1719-1725, 2010.
  • Sheikholeslami M, Gorji-Bandpy M, Ganji DD. “Effect of discontinuous helical turbulators on heat transfer characteristics of double pipe water to air heat exchanger”. Energy Conversion and Management, 118, 75-87, 2016.
  • Keklikcioglu O, Ozceyhan V. “Experimental investigation on heat transfer enhancement of a tube with coiled-wire inserts installed with a separation from the tube wall”. International Communications in Heat and Mass Transfer, 78, 88-94, 2016.
  • Jasiński PB. “Numerical study of thermo-hydraulic characteristics in a circular tube with ball turbulators. Part 3: Thermal performance analysis”. International Journal of Heat and Mass Transfer, 107, 1138-1147, 2017.
  • Chingtuaythong W, Promvonge P, Thianpong C, Pimsarn M. “Heat transfer characterization in a tubular heat exchanger with V-shaped rings”. Applied Thermal Engineering, 110, 1164-1171, 2017.
  • Chang SW, Yu KC, Huang KC. “Thermal performances of tubular flows enhanced by twin and four spiky twisted fins on rod”. Applied Thermal Engineering, 112(5), 45-60, 2017.
  • Sharma KV, Sundar LS, Sarma PK. “Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert”. International Communications in Heat and Mass Transfer, 36(5), 503-507, 2009.
  • Sundar LS, Sharma KV. “Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts”. International Journal Heat and Mass Transfer, 53(7-8), 1409-1416, 2010.
  • Chandrasekar M, Suresh S, Bose AC. “Experimental studies Al2O3/water nanofluid in a circular pipe under laminar flow with wire coil inserts”. Experimental Thermal Fluid Science, 34(2), 122-130, 2010.on heat transfer and friction factor characteristics of
  • Sundar LS, Kumar NTR, Naik MT, Sharma KV. “Effect of full length twisted tape inserts on heat transfer and friction factor enhancement with Fe3O4 magnetic nanofluid inside a plain tube: An experimental study”. International Journal of Heat and Mass Transfer, 55(11-12), 2761-2768, 2012.
  • Azmi WH, Sharma KV, Sarma PK, Mamat R. Anuar S. Sundar LS. “Numerical validation of experimental heat transfer coefficient with SiO2 nanofluid flowing in a tube with twisted tape inserts”. Applied Thermal Engineering, 73(1), 296-306, 2014.
  • Yangı Y, Tango H, Zen B, Jean M. “Numerical Simulation and optimisation of turbulent nanofluids in a three-dimensional arc rib-grooved channel”. Numerical Heat Transfer, Part A: Applications, An International Journal of Computation and Methodology, 70(8), 831-846,2016.
  • Eiamsa-Ard S, Wongcharee K. “Experimental study of TiO2-water nanofluid flow in corrugated tubes mounted with semi-circular wing tapes”. Heat Transfer Engineering, 39(1), 1-14, 2018.
  • ANSYS Fluent user guide & theory guide- Release 15.0, Fluent Ansys Inc, USA, 2015.
  • Pak BC, Cho YI. “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles”. Experimental Heat Transfer, 11(2),151-170, 1998.
  • Nasiri M, Etemad SGh, Bagheri R. “Experimental heat transfer of nanofluid through an annular duct”. International Communications in Heat and Mass Transfer, 38(7), 958-963, 2011.
  • HaghshenasFard M, Esfahany MN, Talaie MR. “Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model”. International Communications in Heat and Mass Transfer, 37(1), 91-97, 2010.
  • Minea AA. “Effect of microtube length on heat transfer enhancement of a water/Al2O3 nanofluid at high Reynolds numbers”. International Journal Heat and Mass Transfer, 62, 22-30, 2013.
  • Kakac S, Pramuanjaroenkij A. “Review of convective heat transfer enhancement with nanofluids”. International Journal Heat and Mass Transfer, 52(13-14), 3187-3196, 2009.
  • Meyer JP, Abolarin SM. “Heat transfer and pressure drop in the transitional flow regime for a smooth circular tube with twisted tape inserts and a square-edged inlet”. International Journal of Heat and Mass Transfer, 117, 11-29, 2018.
  • Wang L, Sunden B. “Performance comparison of some tube inserts”. International Communications Heat and Mass Transfer, 29(1), 45-56, 2002.
  • Zontul H, Kurtulmuş N, Şahin B. “Pulsating flow and heat transfer in wavy channel with zero degree phase shift”. European Mechanical Science, 1(1), 31-38, 2017.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Selma Akçay 0000-0003-2654-0702

Ünal Akdağ 0000-0002-1149-7425

Yayımlanma Tarihi 17 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 24 Sayı: 4

Kaynak Göster

APA Akçay, S., & Akdağ, Ü. (2018). İçerisinde dairesel halkalar bulunan bir boruda nanoakışkanların pulsatif akışının ısı transferine etkisinin parametrik incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(4), 597-604.
AMA Akçay S, Akdağ Ü. İçerisinde dairesel halkalar bulunan bir boruda nanoakışkanların pulsatif akışının ısı transferine etkisinin parametrik incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ağustos 2018;24(4):597-604.
Chicago Akçay, Selma, ve Ünal Akdağ. “İçerisinde Dairesel Halkalar Bulunan Bir Boruda nanoakışkanların Pulsatif akışının ısı Transferine Etkisinin Parametrik Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24, sy. 4 (Ağustos 2018): 597-604.
EndNote Akçay S, Akdağ Ü (01 Ağustos 2018) İçerisinde dairesel halkalar bulunan bir boruda nanoakışkanların pulsatif akışının ısı transferine etkisinin parametrik incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24 4 597–604.
IEEE S. Akçay ve Ü. Akdağ, “İçerisinde dairesel halkalar bulunan bir boruda nanoakışkanların pulsatif akışının ısı transferine etkisinin parametrik incelenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 24, sy. 4, ss. 597–604, 2018.
ISNAD Akçay, Selma - Akdağ, Ünal. “İçerisinde Dairesel Halkalar Bulunan Bir Boruda nanoakışkanların Pulsatif akışının ısı Transferine Etkisinin Parametrik Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24/4 (Ağustos 2018), 597-604.
JAMA Akçay S, Akdağ Ü. İçerisinde dairesel halkalar bulunan bir boruda nanoakışkanların pulsatif akışının ısı transferine etkisinin parametrik incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24:597–604.
MLA Akçay, Selma ve Ünal Akdağ. “İçerisinde Dairesel Halkalar Bulunan Bir Boruda nanoakışkanların Pulsatif akışının ısı Transferine Etkisinin Parametrik Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 24, sy. 4, 2018, ss. 597-04.
Vancouver Akçay S, Akdağ Ü. İçerisinde dairesel halkalar bulunan bir boruda nanoakışkanların pulsatif akışının ısı transferine etkisinin parametrik incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24(4):597-604.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.