Research Article
BibTex RIS Cite

Yama ile tamir edilmiş pim bağlantılı kompozitlerin kırılma davranışı: Üç boyutlu sayısal yaklaşım

Year 2018, Volume: 24 Issue: 4, 643 - 649, 17.08.2018

Abstract

Bu
çalışmada, bir yüzü kompozit yamalı ve pim delikli kompozit levhaların kırılma
davranışı sayısal olarak araştırılmıştır. Levha ve yama malzemesi, pim çapı ve
yapıştırıcı özellikleri gibi parametrelerin değişiminin çatlak ucu gerilme
şiddet faktörü üzerindeki etkileri araştırılmıştır. Çözümde; yama ile tamir
edilmiş levha üç boyutlu olarak modellenmiş ve pim deliği kenarındaki çatlak
ucu yer değiştirmeleri sonlu elemanlar yöntemi ile bulunmuştur. Gerilme şiddet
faktörü; homojen ortotropik malzemeler için üç boyutlu çatlak problemlerine
uygulanabilen DCM (
Displacement Correlation Method) ile elde edilmiştir ve sonuçlar grafikler halinde
sunulmuştur. Pim deliği merkezinden aynı uzaklıktaki çatlak uçları için, büyük
delik çaplarının, büyük çatlak uzunluğuna göre gerilme şiddet faktörü üzerinde
daha etkili bir parametre olduğu görülmüştür. Yama malzemesi değişiminin şiddet
faktörü üzerinde üzerindeki etkisi büyük pim çaplarında artmıştır.

References

  • Dano ML, Gendron G, Picard A. “Stress and failure analysis of mechanically fastened joints in composite laminates”. Composite Structures, 50(3), 287-296, 2000.
  • Ayatollahi MR, Hashemi R. “Mixed mode fracture in an inclined center crack repaired by composite patching”. Composite Structures, 81(2), 264-273, 2007.
  • Bouiadjra BB, Belhouari M, Serier B. “Computation of the stress intensity factors for repaired cracks with bonded composite patch in mod I and mixed mode”. Composite Structures, 56(4), 401-406, 2002.
  • Seo DC, Lee JJ. “Fatigue crack growth behavior of cracked aluminum plate repaired with composite patch”. Composite Structures, 57(1-4), 323-330, 2002.
  • Schubbe JJ, Mall S. “Investigation of a cracked thick aluminum panel repaired with a bonded composite patch”. Engineering Fracture Mechanics, 63(3), 305-323, 1999.
  • Emdad R, Al-Mahaidi R. “Effect of prestressed CFRP patches on crack growth of centre-notched steel plates”. Composite Structures, 123, 109-122, 2015.
  • Reddy S, Jaswanthsai V, Madhavann M, Kumar V. “Notch stress intensity factor for center cracked plates with crack stop hole strengthened using CFRP: A numerical study”. Thin-Walled Structures, 98(B), 252-262, 2016.
  • Srilakshmi R, Ramji M, Chinthapenta V. “Fatigue crack growth study of CFRP patch repaired Al 2014-T6 panel having an inclined center crack using FEA and DIC”. Engineering Fracture Mechanics, 134, 182-201, 2015.
  • Errouane H, Sereir Z, Chateauneuf A. “Numerical model for optimal design of composite patch repair of cracked aluminum plates under tension”. International Journal of Adhesion and Adhesives, 49, 64-72, 2014.
  • Turan K, Kaman MO, Gur M. “Progressive failure analysis of laminated composite plates with two serial pinned joints”. Mechanics of Advanced Materials and Structures, 22(10), 839-849, 2015.
  • Liu X, Wang G. “Progressive failure analysis of bonded composite repairs”. Composite Structures, 81(3), 331-340, 2007.
  • Okutan B, Karakuzu R. “The strength of pinned joints in laminated composites”. Composites Science and Technology, 63(6), 893-905, 2003.
  • Atas A, Arslan N, Sen F. “Failure analysis of laminated composite plates with two parallel pin-loaded holes”. Journal of Reinforced Plastics and Composites, 28(10), 1265-1276, 2009.
  • Madani K, Touzain S, Feaugas X, Cohendouz S, Ratwani M. “Experimental and numerical study of repair techniques for panels with geometrical discontinuities”. Computational Materials Science, 48(1), 83-93, 2010.
  • Ahmad H, Crocombe AD, Smith PA. “Strength prediction in CFRP woven laminate bolted double-lap joints under quasi-static loading using XFEM”. Composites: Part A, 56 192-202, 2014.
  • Abd-Elhady AA, Sallam HEDM. “Crack sensitivity of bolted metallic and polymeric joints”. Engineering Fracture Mechanics, 147, 55–71, 2015.
  • Liging W, Bingzheng G. “Numerical computation of stress intensity factor for bolt-hole corner crack in mechanical joints”, Chinese Journal of Aeronautics, 21(5), 411-416, 2008.
  • Fawaz AS, Anderson B. “Accurate stress intensity factor solutions for corner cracks at a hole”, Engineering Fracture Mechanics, 71, 1235-1254, 2004.
  • Horng LT, Ju HS. “Behaviors of a single crack in multiple bolted joints”, International Journal of Solids and Structures, 36(27), 4055-4070, 1999.
  • Wanga W, Ransa C, Zhangb Z, Benedictus R. “Prediction methodology for fatigue crack growth behaviour in fibre metal laminates subjected to tension and pin loading”. Composite Structures, 182(15), 176-182, 2017.
  • Kabeel AM, Maimi P, Gonzalez EV, Gascons N. “Net-tension strength of double-lap joints under bearing-bypass loading conditions using the cohesive zone mode”. Composite Structures, 119, 443-451, 2015.
  • ANSYS, 13.0, (Academic Teaching Introductory) Command References and Gui.
  • Arman Y, Zor M, Aksoy S. “Determination of critical delamination diameter of laminated composite plates under buckling loads”. Composites Science and Technology, 66(15), 2945-2953, 2006.
  • Okafor C, Bhogapurapu H. “Design and analysis of adhesively bonded thick composite patch repair of corrosion grind-out and cracks on 2024 T3 clad aluminum aging aircraft structures”. Composite Structures, 6(1-2), 138-150, 2006.
  • Ayatollahi MR, Hashemi R. “Mixed mode fracture in an inclined center crack repaired by composite patching”. Composite Structures, 81(2), 264-273, 2007.
  • Toudeshkya HH, Ghaffaria MA, Mohammadib B. “Fatigue propagation of induced cracks by stiffeners in repaired panels with composite patches”. Procedia Engineering, 10, 3285-3290, 2011.
  • Gu L, Kasavajhala ARM, Zhao S. “Finite element analysis of cracks in aging aircraft structures with bonded composite-patch repairs”. Composites: Part B, 42(3), 505-510, 2011.
  • Ozkan U, Kaya AC, Loghin A, Ayhan A, Nied HF. “Fracture analysis of cracks in anisotropic materials using 3DFAS and ANSYS”, ASME Applied Mechanics Division, Proceedings of IMECE 2006, Chicago, Illinois, USA, 5-10 November 2006.
  • Kaman MO, Cetişli F. “Yama ile tamir edilmiş kenar çatlak içeren kompozit levha probleminin sayısal analizi”. 9. Uluslararası Kırılma Konferansı, Yıldız Teknik Üniversitesi, İstanbul, Türkiye, 19-21 Ekim 2011.
  • Gündüz Y. Yama ile Tamir Edilmiş Çatlak İçeren Pim Bağlantılı Kompozitlerde Kırılma Davranışının Sayısal Analizi. Yüksek Lisans Tezi, Fırat Üniversitesi, Elazığ, Türkiye, 2013.
  • Turaga VRS, Ripudaman S. “Modeling of patch repairs to a thin cracked sheet”. Engineering Fracture Mechanics, 62(2-3), 267-89, 1999.
  • Kaman MO, Gündüz Y, Turan K. “Kompozit yama ile tamir edilmiş pim delikli levhalarda çatlak problemi”. I. Ulusal Ege Kompozit Malzemeler Sempozyumu, İzmir, Türkiye, 17-19 Kasım, 2011.
  • Kaya AC, Erdogan F. “Stress intensity factors and COD in an orthotropic strip”. International Journal of Fracture, 16(2), 171-190, 1980.

Fracture behavior of bolted joints in composites repaired with patch: 3D numerical approach

Year 2018, Volume: 24 Issue: 4, 643 - 649, 17.08.2018

Abstract

In
this study, fracture behavior of bolted joints in composite plates containing
cracks repaired with single-sided composite patch was numerically investigated.
The effects of variation of parameters such as plate and patch materials, pin
diameter and adhesive properties on stress intensity factor ate crack tip were
investigated. In the solution, the plate repaired with the patch was modeled as
three-dimensional and the crack displacement at the edge of the pin hole was
found by the finite element method. Stress intensity factor is obtained by DCM
(Displacement Correlation Method) which can be applied to three dimensional
crack problems for homogeneous orthotropic materials and the results are
presented in graphical form. It has been found that for the crack tips at the
same distance from the center of the pin hole, larger hole diameters are a more
effective parameter on the stress intensity factor than the larger crack
length. It has been found that the effect of the patch material variation on
the stress intensity factor is increased at large pin diameters.

References

  • Dano ML, Gendron G, Picard A. “Stress and failure analysis of mechanically fastened joints in composite laminates”. Composite Structures, 50(3), 287-296, 2000.
  • Ayatollahi MR, Hashemi R. “Mixed mode fracture in an inclined center crack repaired by composite patching”. Composite Structures, 81(2), 264-273, 2007.
  • Bouiadjra BB, Belhouari M, Serier B. “Computation of the stress intensity factors for repaired cracks with bonded composite patch in mod I and mixed mode”. Composite Structures, 56(4), 401-406, 2002.
  • Seo DC, Lee JJ. “Fatigue crack growth behavior of cracked aluminum plate repaired with composite patch”. Composite Structures, 57(1-4), 323-330, 2002.
  • Schubbe JJ, Mall S. “Investigation of a cracked thick aluminum panel repaired with a bonded composite patch”. Engineering Fracture Mechanics, 63(3), 305-323, 1999.
  • Emdad R, Al-Mahaidi R. “Effect of prestressed CFRP patches on crack growth of centre-notched steel plates”. Composite Structures, 123, 109-122, 2015.
  • Reddy S, Jaswanthsai V, Madhavann M, Kumar V. “Notch stress intensity factor for center cracked plates with crack stop hole strengthened using CFRP: A numerical study”. Thin-Walled Structures, 98(B), 252-262, 2016.
  • Srilakshmi R, Ramji M, Chinthapenta V. “Fatigue crack growth study of CFRP patch repaired Al 2014-T6 panel having an inclined center crack using FEA and DIC”. Engineering Fracture Mechanics, 134, 182-201, 2015.
  • Errouane H, Sereir Z, Chateauneuf A. “Numerical model for optimal design of composite patch repair of cracked aluminum plates under tension”. International Journal of Adhesion and Adhesives, 49, 64-72, 2014.
  • Turan K, Kaman MO, Gur M. “Progressive failure analysis of laminated composite plates with two serial pinned joints”. Mechanics of Advanced Materials and Structures, 22(10), 839-849, 2015.
  • Liu X, Wang G. “Progressive failure analysis of bonded composite repairs”. Composite Structures, 81(3), 331-340, 2007.
  • Okutan B, Karakuzu R. “The strength of pinned joints in laminated composites”. Composites Science and Technology, 63(6), 893-905, 2003.
  • Atas A, Arslan N, Sen F. “Failure analysis of laminated composite plates with two parallel pin-loaded holes”. Journal of Reinforced Plastics and Composites, 28(10), 1265-1276, 2009.
  • Madani K, Touzain S, Feaugas X, Cohendouz S, Ratwani M. “Experimental and numerical study of repair techniques for panels with geometrical discontinuities”. Computational Materials Science, 48(1), 83-93, 2010.
  • Ahmad H, Crocombe AD, Smith PA. “Strength prediction in CFRP woven laminate bolted double-lap joints under quasi-static loading using XFEM”. Composites: Part A, 56 192-202, 2014.
  • Abd-Elhady AA, Sallam HEDM. “Crack sensitivity of bolted metallic and polymeric joints”. Engineering Fracture Mechanics, 147, 55–71, 2015.
  • Liging W, Bingzheng G. “Numerical computation of stress intensity factor for bolt-hole corner crack in mechanical joints”, Chinese Journal of Aeronautics, 21(5), 411-416, 2008.
  • Fawaz AS, Anderson B. “Accurate stress intensity factor solutions for corner cracks at a hole”, Engineering Fracture Mechanics, 71, 1235-1254, 2004.
  • Horng LT, Ju HS. “Behaviors of a single crack in multiple bolted joints”, International Journal of Solids and Structures, 36(27), 4055-4070, 1999.
  • Wanga W, Ransa C, Zhangb Z, Benedictus R. “Prediction methodology for fatigue crack growth behaviour in fibre metal laminates subjected to tension and pin loading”. Composite Structures, 182(15), 176-182, 2017.
  • Kabeel AM, Maimi P, Gonzalez EV, Gascons N. “Net-tension strength of double-lap joints under bearing-bypass loading conditions using the cohesive zone mode”. Composite Structures, 119, 443-451, 2015.
  • ANSYS, 13.0, (Academic Teaching Introductory) Command References and Gui.
  • Arman Y, Zor M, Aksoy S. “Determination of critical delamination diameter of laminated composite plates under buckling loads”. Composites Science and Technology, 66(15), 2945-2953, 2006.
  • Okafor C, Bhogapurapu H. “Design and analysis of adhesively bonded thick composite patch repair of corrosion grind-out and cracks on 2024 T3 clad aluminum aging aircraft structures”. Composite Structures, 6(1-2), 138-150, 2006.
  • Ayatollahi MR, Hashemi R. “Mixed mode fracture in an inclined center crack repaired by composite patching”. Composite Structures, 81(2), 264-273, 2007.
  • Toudeshkya HH, Ghaffaria MA, Mohammadib B. “Fatigue propagation of induced cracks by stiffeners in repaired panels with composite patches”. Procedia Engineering, 10, 3285-3290, 2011.
  • Gu L, Kasavajhala ARM, Zhao S. “Finite element analysis of cracks in aging aircraft structures with bonded composite-patch repairs”. Composites: Part B, 42(3), 505-510, 2011.
  • Ozkan U, Kaya AC, Loghin A, Ayhan A, Nied HF. “Fracture analysis of cracks in anisotropic materials using 3DFAS and ANSYS”, ASME Applied Mechanics Division, Proceedings of IMECE 2006, Chicago, Illinois, USA, 5-10 November 2006.
  • Kaman MO, Cetişli F. “Yama ile tamir edilmiş kenar çatlak içeren kompozit levha probleminin sayısal analizi”. 9. Uluslararası Kırılma Konferansı, Yıldız Teknik Üniversitesi, İstanbul, Türkiye, 19-21 Ekim 2011.
  • Gündüz Y. Yama ile Tamir Edilmiş Çatlak İçeren Pim Bağlantılı Kompozitlerde Kırılma Davranışının Sayısal Analizi. Yüksek Lisans Tezi, Fırat Üniversitesi, Elazığ, Türkiye, 2013.
  • Turaga VRS, Ripudaman S. “Modeling of patch repairs to a thin cracked sheet”. Engineering Fracture Mechanics, 62(2-3), 267-89, 1999.
  • Kaman MO, Gündüz Y, Turan K. “Kompozit yama ile tamir edilmiş pim delikli levhalarda çatlak problemi”. I. Ulusal Ege Kompozit Malzemeler Sempozyumu, İzmir, Türkiye, 17-19 Kasım, 2011.
  • Kaya AC, Erdogan F. “Stress intensity factors and COD in an orthotropic strip”. International Journal of Fracture, 16(2), 171-190, 1980.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Yunus Gündüz This is me 0000-0001-9069-3135

Mete Onur Kaman 0000-0003-0178-6079

Publication Date August 17, 2018
Published in Issue Year 2018 Volume: 24 Issue: 4

Cite

APA Gündüz, Y., & Kaman, M. O. (2018). Yama ile tamir edilmiş pim bağlantılı kompozitlerin kırılma davranışı: Üç boyutlu sayısal yaklaşım. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(4), 643-649.
AMA Gündüz Y, Kaman MO. Yama ile tamir edilmiş pim bağlantılı kompozitlerin kırılma davranışı: Üç boyutlu sayısal yaklaşım. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. August 2018;24(4):643-649.
Chicago Gündüz, Yunus, and Mete Onur Kaman. “Yama Ile Tamir Edilmiş Pim bağlantılı Kompozitlerin kırılma davranışı: Üç Boyutlu sayısal yaklaşım”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24, no. 4 (August 2018): 643-49.
EndNote Gündüz Y, Kaman MO (August 1, 2018) Yama ile tamir edilmiş pim bağlantılı kompozitlerin kırılma davranışı: Üç boyutlu sayısal yaklaşım. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24 4 643–649.
IEEE Y. Gündüz and M. O. Kaman, “Yama ile tamir edilmiş pim bağlantılı kompozitlerin kırılma davranışı: Üç boyutlu sayısal yaklaşım”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 24, no. 4, pp. 643–649, 2018.
ISNAD Gündüz, Yunus - Kaman, Mete Onur. “Yama Ile Tamir Edilmiş Pim bağlantılı Kompozitlerin kırılma davranışı: Üç Boyutlu sayısal yaklaşım”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24/4 (August 2018), 643-649.
JAMA Gündüz Y, Kaman MO. Yama ile tamir edilmiş pim bağlantılı kompozitlerin kırılma davranışı: Üç boyutlu sayısal yaklaşım. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24:643–649.
MLA Gündüz, Yunus and Mete Onur Kaman. “Yama Ile Tamir Edilmiş Pim bağlantılı Kompozitlerin kırılma davranışı: Üç Boyutlu sayısal yaklaşım”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 24, no. 4, 2018, pp. 643-9.
Vancouver Gündüz Y, Kaman MO. Yama ile tamir edilmiş pim bağlantılı kompozitlerin kırılma davranışı: Üç boyutlu sayısal yaklaşım. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24(4):643-9.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif