Araştırma Makalesi
BibTex RIS Kaynak Göster

Samsun Sahili midye kabuklarının ağır metal giderim potansiyelinin belirlenmesi

Yıl 2018, Cilt: 24 Sayı: 6, 1135 - 1140, 18.12.2018

Öz

Bu
çalışma kapsamında Samsun Sahilleri’nden toplanan midye kabukları kullanılarak,
bu kabukların sentetik olarak hazırlanmış atıksulardan kurşun ve nikel gibi
ağır metalleri giderme kapasitesi araştırılmıştır. Yapılan çalışmalarda, midye
kabukları iki ayrı şekilde kullanılmıştır. Bunlardan ilkinde, ham midye
kabukları sadece öğütülmüştür. Diğerinde ise, kabuklar öğütüldükten sonra
sülfürik asit kullanılarak ön arıtımdan geçirilmiştir. Deneysel çalışmalarda
pH, zaman, midye kabuğu miktarı gibi çeşitli değişkenler kullanılarak midye
kabuklarının ağır metal giderim potansiyeli incelenmiştir. Çalışmalar 25 °C
sabit sıcaklık ve 150 devir/dk. çalkalama hızında yürütülmüştür. Deneylerde
kullanılan midye kabuğu boyutu 45-125 µm olarak seçilmiştir. Yapılan çalışmalar
neticesinde elde edilen sonuçlara göre, ham olarak kullanılan midye
kabuklarıyla yapılan deneylerde, arıtım sonrası pH değerleri dikkate alınarak,
kimyasal çöktürme mekanizmasının hâkim mekanizma olduğu sonucuna varılmıştır.
Ön arıtımlı (asitle muamele edilmiş) midye kabuklarının arıtım performansı
incelendiğinde ise, meydana gelen arıtım mekanizmasının adsorpsiyonu temsil
ettiği anlaşılmıştır. Ham midye kabukları kullanılarak, kurşun ve nikel iyonu
konsantrasyonları yaklaşık olarak 100 mg/L’den sırasıyla en düşük 3.9 mg/L ve
73.62 mg/L’ye indirilmiştir. Ön arıtımlı midye kabukları ile yapılan
çalışmalarda ise sadece kurşun giderimi araştırılmış ve yaklaşık 100 mg/L olan
başlangıç konsantrasyonu pH 2’de 9.22 mg/L’ye düşürülmüştür. Ön arıtımlı midye
kabukları için adsorbent tutma kapasitesi (q) 0.4 g/L midye kabuğu dozajında
244.74 mg/g olarak bulunmuştur.

Kaynakça

  • Zhan X-M, Zhao X. “Mechanism of lead adsorption from aqueous solutions using an adsorbent synthesized from natural condensed tannin”. Water Research, 37(16), 3905-3912, 2003.
  • Taşar Ş, Kaya F, Özer A. “Biosorption of lead(II) ions from aqueous solution by peanut shells: Equilibrium, thermodynamic and kinetic studies”. Journal of Environmental Chemical Engineering, 2(2), 1018-1026, 2014.
  • Padmavathy V. “Biosorption of nickel(II) ions by baker’s yeast: Kinetic, thermodynamic and desorption studies”. Bioresource Technology, 99(8), 3100-3109, 2008.
  • Bulut Y, Baysal Z. “Removal of Pb(II) from wastewater using wheat bran”. Journal of Environmental Management, 78 (2), 107-113, 2006.
  • García-Rosales G, Colín-Cruz A. “Biosorption of lead by maize (Zea mays) stalk sponge”. Journal of Environmental Management, 91 (11), 2079-2086, 2010.
  • Subbaiah MV, Vijaya Y, Kumar NS, Reddy AS, Krishnaiah A. “Biosorption of nickel from aqueous solutions by Acacia leucocephala bark: Kinetics and equilibrium studies”. Colloids and Surfaces B: Biointerfaces, 74(1), 260-265, 2009.
  • Amini M, Younesi H, Bahramifar N. “Biosorption of nickel(II) from aqueous solution by Aspergillus niger: Response surface methodology and isotherm study”. Chemosphere, 75(11), 1483-1491, 2009.
  • Oncel MS, Muhcu A, Demirbas E, Kobya M. “A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater”. Journal of Environmental Chemical Engineering, 1(4), 989-995, 2013.
  • Vergili I, Gönder ZB, Kaya Y, Gürdağ G, Çavuş S. “Sorption of Pb (II) from battery industry wastewater using a weak acid cation exchange resin”. Process Safety and Environmental Protection, 107, 498-507, 2017.
  • Bahadir T, Bakan G, Altas L, Buyukgungor H. “The investigation of lead removal by biosorption: An application at storage battery industry wastewaters”. Enzyme and Microbial Technology, 41(1-2), 98-102, 2007.
  • Işik M. “Biosorption of Ni(II) from aqueous solutions by living and non-living ureolytic mixed culture”. Colloids and Surfaces B: Biointerfaces, 62(1), 97-104, 2008.
  • Gürel L, Altaş L, Büyükgüngör H. “Removal of lead from wastewater using emulsion liquid membrane technique”. Environmental Engineering Science, 22(4), 411-420, 2005.
  • Hachemaoui A, Belhamel K. “Simultaneous extraction and separation of cobalt and nickel from chloride solution through emulsion liquid membrane using Cyanex 301 as extractant”. International Journal of Mineral Processing, 161, 7-12, 2017.
  • Molaei A, Kökkılıç O, Waters KE. “An investigation into predispersed solvent extraction of nickel (II) ions from dilute aqueous solutions”. Separation and Purification Technology, 174, 396-407, 2017.
  • Lakard S, Magnenet C, Mokhter MA, Euvrard M, Buron CC, Lakard B. “Retention of Cu(II) and Ni(II) ions by filtration through polymer-modified membranes”. Separation and Purification Technology, 149, 1-8, 2015.
  • Lu J, Li Y, Yin M, Ma X, Lin S. “Removing heavy metal ions with continuous aluminum electrocoagulation: A study on back mixing and utilization rate of electro-generated Al ions”. Chemical Engineering Journal, 267, 86-92, 2015.
  • Sari A, Tuzen M, Uluözlü OD, Soylak M. “Biosorption of Pb(II) and Ni(II) from aqueous solution by lichen (Cladonia furcata) biomass”. Biochemical Engineering Journal, 37 (2), 151-158, 2007.
  • Yuvaraja G, Krishnaiah N, Subbaiah MV, Krishnaiah A. “Biosorption of Pb(II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste”. Colloids and Surfaces B: Biointerfaces, 114, 75-81, 2014.
  • Yang X, Cui X. “Adsorption characteristics of Pb (II) on alkali treated tea residue”. Water Resources and Industry, 3, 1-10, 2013.
  • Martín-Lara MA, Blázquez G, Calero M, Almendros AI, Ronda A. “Binary biosorption of copper and lead onto pine cone shell in batch reactors and in fixed bed columns”. International Journal of Mineral Processing, 148, 72-82, 2016.
  • Dissanayake DMREA, Wijesinghe WMKEH, Iqbal SS, Priyantha N, Iqbal MCM. “Isotherm and kinetic study on Ni(II) and Pb(II) biosorption by the fern Asplenium nidus L.”. Ecological Engineering, 88, 237-241, 2016.
  • Bhattacharjee S, Chakrabarty S, Maity S, Kar S, Thakur P, Bhattacharyya G. “Removal of lead from contaminated water bodies using sea nodule as an adsorbent”. Water Research, 37 (16), 3954-3966, 2003.
  • Reddy DHK, Seshaiah K, Reddy AVR, Lee SM. “Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder”. Carbohydrate Polymers, 88(3), 1077-1086, 2012.
  • Pahlavanzadeh H, Keshtkar AR, Safdari J, Abadi Z. “Biosorption of nickel(II) from aqueous solution by brown algae: Equilibrium, dynamic and thermodynamic studies”. Journal of Hazardous Materials, 175(1-3), 304-310, 2010.
  • Aydın Temel F. “Kinetics and thermodynamics of the Ni(II) ions sorption from industrial wastewater by gyttja”. International Journal of Exergy, 23(4), 279-297, 2017.
  • Liu Y, Sun C, Xu J, Li Y. “The use of raw and acid-pretreated bivalve mollusk shells to remove metals from aqueous solutions”. Journal of Hazardous Materials, 168(1), 156-162, 2009.
  • Yan C, Li G, Xue P, Wei Q, Li Q. “Competitive effect of Cu(II) and Zn(II) on the biosorption of lead(II) by Myriophyllum spicatum”. Journal of Hazardous Materials, 179(1-3), 721-728, 2010.
  • Masoumi F, Khadivinia E, Alidoust L, Mansourinejad Z, Shahryari S, Safaei M, Mousavi A, Salmanian AH, Zahiri HS, Vali H, Noghabi KA. “Nickel and lead biosorption by Curtobacterium sp. FM01, an indigenous bacterium isolated from farmland soils of northeast Iran”. Journal of Environmental Chemical Engineering, 4(1), 950-957, 2016.
  • Çelekli A, Bozkurt H. “Bio-sorption of cadmium and nickel ions using Spirulina platensis: Kinetic and equilibrium studies”. Desalination, 275 (1-3), 141-147, 2011.
  • Xiong J, Qin Y, Islam E, Yue M, Wang W. “Phosphate removal from solution using powdered freshwater mussel shells”. Desalination, 276(1-3), 317-321, 2011.
  • Akar ST, Gorgulu A, Anilan B, Kaynak Z, Akar T. “Investigation of the biosorption characteristics of lead(II) ions onto Symphoricarpus albus: Batch and dynamic flow studies”. Journal of Hazardous Materials, 165(1-3), 126-133, 2009.
  • Ronda A, Martín-Lara MA, Almendros AI, Pérez A, Blázquez G. “Comparison of two models for the biosorption of Pb(II) using untreated and chemically treated olive stone: Experimental design methodology and adaptive neural fuzzy inference system (ANFIS)”. Journal of the Taiwan Institute of Chemical Engineers, 54, 45-56, 2015.
  • Oguntimein GB. “Biosorption of dye from textile wastewater effluent onto alkali treated dried sunflower seed hull and design of a batch adsorber”. Journal of Environmental Chemical Engineering, 3(4), 2647-2661, 2015.
  • Senthil Kumar P, Palaniyappan M, Priyadharshini M, Vignesh AM, Thanjiappan A, Sebastina Anne Fernando P, Tanvir Ahmed R, Srinath R. “Adsorption of basic dye onto raw and surface-modified agricultural waste”. Environmental Progress and Sustainable Energy, 33(1), 87-98, 2014.
  • Luo F, Liu Y, Li X, Xuan Z, Ma J. “Biosorption of lead ion by chemically-modified biomass of marine brown algae Laminaria japonica”. Chemosphere, 64(7), 1122-1127, 2006.
  • Gabr RMM, Hassan SHAHA, Shoreit AAMAM. “Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a”. International Biodeterioration and Biodegradation, 62(2), 195-203, 2008.
  • Tabaraki R, Nateghi A, Ahmady-Asbchin S. “Biosorption of lead (II) ions on Sargassum ilicifolium: Application of response surface methodology”. International Biodeterioration and Biodegradation, 93, 145-152, 2014.
  • Liu B, Chen W, Peng X, Cao Q, Wang Q, Wang D, Meng X, Yu G. “Biosorption of lead from aqueous solutions by ion-imprinted tetraethylenepentamine modified chitosan beads”. International Journal of Biological Macromolecules, 86, 562-569, 2016.
  • Vimala R, Das N. “Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: A comparative study”. Journal of Hazardous Materials, 168(1), 376-382, 2009.
  • Gupta VK, Rastogi A. “Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.-A comparative study”. Colloids and Surfaces B: Biointerfaces, 64(2), 170-178, 2008.
  • Blázquez G, Calero M, Hernáinz F, Tenorio G, Martín-Lara MA. “Equilibrium biosorption of lead(II) from aqueous solutions by solid waste from olive-oil production”. Chemical Engineering Journal, 160(2), 615-622, 2010.

Determination of heavy metal removal potential of the Samsun Coast mussel shells

Yıl 2018, Cilt: 24 Sayı: 6, 1135 - 1140, 18.12.2018

Öz

The
removal capacity of mussel shells in removing heavy metals such as lead and
nickel from wastewaters prepared synthetically was investigated by using the
shells collected from Samsun Coasts within the scope of this work. In the
studies, mussel shells were used in two different forms. In the first form, raw
mussel shells were only grinded. On the other one, the mussel shells were
pretreated by using sulfuric acid after grinding. The heavy metal removal
potential of mussel shells was investigated using various variables such as pH,
time and mussel shell dosage in experimental studies. Tests were conducted at
25 °C constant temperature and a shaking speed of 150 rpm. The size of the
mussel shell used in experimental studies was chosen as 45-125 µm. It was
concluded from the results of the studies carried out by using raw mussel
shells that the dominant mechanism was chemical precipitation according to the
pH values after treatment process. It has been understood that the treatment
mechanism was adsorption when the treatment performance of the pretreated
mussel shells was in question. Lead and nickel ion concentrations were reduced
from approximately 100 mg/L to 3.90 mg/L and 73.62 mg/L, respectively by using
raw mussel shells. In the tests conducted with pretreated mussel shells, only
lead removal was studied and lead concentration of approximately 100 mg/L was
decreased to 9.22 mg/L at pH 2. Adsorbent uptake capacity was found to be
244.74 mg/g at 0.4 g/L mussel shell dosage for pretreated mussel shells.

Kaynakça

  • Zhan X-M, Zhao X. “Mechanism of lead adsorption from aqueous solutions using an adsorbent synthesized from natural condensed tannin”. Water Research, 37(16), 3905-3912, 2003.
  • Taşar Ş, Kaya F, Özer A. “Biosorption of lead(II) ions from aqueous solution by peanut shells: Equilibrium, thermodynamic and kinetic studies”. Journal of Environmental Chemical Engineering, 2(2), 1018-1026, 2014.
  • Padmavathy V. “Biosorption of nickel(II) ions by baker’s yeast: Kinetic, thermodynamic and desorption studies”. Bioresource Technology, 99(8), 3100-3109, 2008.
  • Bulut Y, Baysal Z. “Removal of Pb(II) from wastewater using wheat bran”. Journal of Environmental Management, 78 (2), 107-113, 2006.
  • García-Rosales G, Colín-Cruz A. “Biosorption of lead by maize (Zea mays) stalk sponge”. Journal of Environmental Management, 91 (11), 2079-2086, 2010.
  • Subbaiah MV, Vijaya Y, Kumar NS, Reddy AS, Krishnaiah A. “Biosorption of nickel from aqueous solutions by Acacia leucocephala bark: Kinetics and equilibrium studies”. Colloids and Surfaces B: Biointerfaces, 74(1), 260-265, 2009.
  • Amini M, Younesi H, Bahramifar N. “Biosorption of nickel(II) from aqueous solution by Aspergillus niger: Response surface methodology and isotherm study”. Chemosphere, 75(11), 1483-1491, 2009.
  • Oncel MS, Muhcu A, Demirbas E, Kobya M. “A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater”. Journal of Environmental Chemical Engineering, 1(4), 989-995, 2013.
  • Vergili I, Gönder ZB, Kaya Y, Gürdağ G, Çavuş S. “Sorption of Pb (II) from battery industry wastewater using a weak acid cation exchange resin”. Process Safety and Environmental Protection, 107, 498-507, 2017.
  • Bahadir T, Bakan G, Altas L, Buyukgungor H. “The investigation of lead removal by biosorption: An application at storage battery industry wastewaters”. Enzyme and Microbial Technology, 41(1-2), 98-102, 2007.
  • Işik M. “Biosorption of Ni(II) from aqueous solutions by living and non-living ureolytic mixed culture”. Colloids and Surfaces B: Biointerfaces, 62(1), 97-104, 2008.
  • Gürel L, Altaş L, Büyükgüngör H. “Removal of lead from wastewater using emulsion liquid membrane technique”. Environmental Engineering Science, 22(4), 411-420, 2005.
  • Hachemaoui A, Belhamel K. “Simultaneous extraction and separation of cobalt and nickel from chloride solution through emulsion liquid membrane using Cyanex 301 as extractant”. International Journal of Mineral Processing, 161, 7-12, 2017.
  • Molaei A, Kökkılıç O, Waters KE. “An investigation into predispersed solvent extraction of nickel (II) ions from dilute aqueous solutions”. Separation and Purification Technology, 174, 396-407, 2017.
  • Lakard S, Magnenet C, Mokhter MA, Euvrard M, Buron CC, Lakard B. “Retention of Cu(II) and Ni(II) ions by filtration through polymer-modified membranes”. Separation and Purification Technology, 149, 1-8, 2015.
  • Lu J, Li Y, Yin M, Ma X, Lin S. “Removing heavy metal ions with continuous aluminum electrocoagulation: A study on back mixing and utilization rate of electro-generated Al ions”. Chemical Engineering Journal, 267, 86-92, 2015.
  • Sari A, Tuzen M, Uluözlü OD, Soylak M. “Biosorption of Pb(II) and Ni(II) from aqueous solution by lichen (Cladonia furcata) biomass”. Biochemical Engineering Journal, 37 (2), 151-158, 2007.
  • Yuvaraja G, Krishnaiah N, Subbaiah MV, Krishnaiah A. “Biosorption of Pb(II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste”. Colloids and Surfaces B: Biointerfaces, 114, 75-81, 2014.
  • Yang X, Cui X. “Adsorption characteristics of Pb (II) on alkali treated tea residue”. Water Resources and Industry, 3, 1-10, 2013.
  • Martín-Lara MA, Blázquez G, Calero M, Almendros AI, Ronda A. “Binary biosorption of copper and lead onto pine cone shell in batch reactors and in fixed bed columns”. International Journal of Mineral Processing, 148, 72-82, 2016.
  • Dissanayake DMREA, Wijesinghe WMKEH, Iqbal SS, Priyantha N, Iqbal MCM. “Isotherm and kinetic study on Ni(II) and Pb(II) biosorption by the fern Asplenium nidus L.”. Ecological Engineering, 88, 237-241, 2016.
  • Bhattacharjee S, Chakrabarty S, Maity S, Kar S, Thakur P, Bhattacharyya G. “Removal of lead from contaminated water bodies using sea nodule as an adsorbent”. Water Research, 37 (16), 3954-3966, 2003.
  • Reddy DHK, Seshaiah K, Reddy AVR, Lee SM. “Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder”. Carbohydrate Polymers, 88(3), 1077-1086, 2012.
  • Pahlavanzadeh H, Keshtkar AR, Safdari J, Abadi Z. “Biosorption of nickel(II) from aqueous solution by brown algae: Equilibrium, dynamic and thermodynamic studies”. Journal of Hazardous Materials, 175(1-3), 304-310, 2010.
  • Aydın Temel F. “Kinetics and thermodynamics of the Ni(II) ions sorption from industrial wastewater by gyttja”. International Journal of Exergy, 23(4), 279-297, 2017.
  • Liu Y, Sun C, Xu J, Li Y. “The use of raw and acid-pretreated bivalve mollusk shells to remove metals from aqueous solutions”. Journal of Hazardous Materials, 168(1), 156-162, 2009.
  • Yan C, Li G, Xue P, Wei Q, Li Q. “Competitive effect of Cu(II) and Zn(II) on the biosorption of lead(II) by Myriophyllum spicatum”. Journal of Hazardous Materials, 179(1-3), 721-728, 2010.
  • Masoumi F, Khadivinia E, Alidoust L, Mansourinejad Z, Shahryari S, Safaei M, Mousavi A, Salmanian AH, Zahiri HS, Vali H, Noghabi KA. “Nickel and lead biosorption by Curtobacterium sp. FM01, an indigenous bacterium isolated from farmland soils of northeast Iran”. Journal of Environmental Chemical Engineering, 4(1), 950-957, 2016.
  • Çelekli A, Bozkurt H. “Bio-sorption of cadmium and nickel ions using Spirulina platensis: Kinetic and equilibrium studies”. Desalination, 275 (1-3), 141-147, 2011.
  • Xiong J, Qin Y, Islam E, Yue M, Wang W. “Phosphate removal from solution using powdered freshwater mussel shells”. Desalination, 276(1-3), 317-321, 2011.
  • Akar ST, Gorgulu A, Anilan B, Kaynak Z, Akar T. “Investigation of the biosorption characteristics of lead(II) ions onto Symphoricarpus albus: Batch and dynamic flow studies”. Journal of Hazardous Materials, 165(1-3), 126-133, 2009.
  • Ronda A, Martín-Lara MA, Almendros AI, Pérez A, Blázquez G. “Comparison of two models for the biosorption of Pb(II) using untreated and chemically treated olive stone: Experimental design methodology and adaptive neural fuzzy inference system (ANFIS)”. Journal of the Taiwan Institute of Chemical Engineers, 54, 45-56, 2015.
  • Oguntimein GB. “Biosorption of dye from textile wastewater effluent onto alkali treated dried sunflower seed hull and design of a batch adsorber”. Journal of Environmental Chemical Engineering, 3(4), 2647-2661, 2015.
  • Senthil Kumar P, Palaniyappan M, Priyadharshini M, Vignesh AM, Thanjiappan A, Sebastina Anne Fernando P, Tanvir Ahmed R, Srinath R. “Adsorption of basic dye onto raw and surface-modified agricultural waste”. Environmental Progress and Sustainable Energy, 33(1), 87-98, 2014.
  • Luo F, Liu Y, Li X, Xuan Z, Ma J. “Biosorption of lead ion by chemically-modified biomass of marine brown algae Laminaria japonica”. Chemosphere, 64(7), 1122-1127, 2006.
  • Gabr RMM, Hassan SHAHA, Shoreit AAMAM. “Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a”. International Biodeterioration and Biodegradation, 62(2), 195-203, 2008.
  • Tabaraki R, Nateghi A, Ahmady-Asbchin S. “Biosorption of lead (II) ions on Sargassum ilicifolium: Application of response surface methodology”. International Biodeterioration and Biodegradation, 93, 145-152, 2014.
  • Liu B, Chen W, Peng X, Cao Q, Wang Q, Wang D, Meng X, Yu G. “Biosorption of lead from aqueous solutions by ion-imprinted tetraethylenepentamine modified chitosan beads”. International Journal of Biological Macromolecules, 86, 562-569, 2016.
  • Vimala R, Das N. “Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: A comparative study”. Journal of Hazardous Materials, 168(1), 376-382, 2009.
  • Gupta VK, Rastogi A. “Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.-A comparative study”. Colloids and Surfaces B: Biointerfaces, 64(2), 170-178, 2008.
  • Blázquez G, Calero M, Hernáinz F, Tenorio G, Martín-Lara MA. “Equilibrium biosorption of lead(II) from aqueous solutions by solid waste from olive-oil production”. Chemical Engineering Journal, 160(2), 615-622, 2010.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Levent Gürel

Selahi Güneş Bu kişi benim

Yayımlanma Tarihi 18 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 24 Sayı: 6

Kaynak Göster

APA Gürel, L., & Güneş, S. (2018). Samsun Sahili midye kabuklarının ağır metal giderim potansiyelinin belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(6), 1135-1140.
AMA Gürel L, Güneş S. Samsun Sahili midye kabuklarının ağır metal giderim potansiyelinin belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2018;24(6):1135-1140.
Chicago Gürel, Levent, ve Selahi Güneş. “Samsun Sahili Midye kabuklarının ağır Metal Giderim Potansiyelinin Belirlenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24, sy. 6 (Aralık 2018): 1135-40.
EndNote Gürel L, Güneş S (01 Aralık 2018) Samsun Sahili midye kabuklarının ağır metal giderim potansiyelinin belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24 6 1135–1140.
IEEE L. Gürel ve S. Güneş, “Samsun Sahili midye kabuklarının ağır metal giderim potansiyelinin belirlenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 24, sy. 6, ss. 1135–1140, 2018.
ISNAD Gürel, Levent - Güneş, Selahi. “Samsun Sahili Midye kabuklarının ağır Metal Giderim Potansiyelinin Belirlenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24/6 (Aralık 2018), 1135-1140.
JAMA Gürel L, Güneş S. Samsun Sahili midye kabuklarının ağır metal giderim potansiyelinin belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24:1135–1140.
MLA Gürel, Levent ve Selahi Güneş. “Samsun Sahili Midye kabuklarının ağır Metal Giderim Potansiyelinin Belirlenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 24, sy. 6, 2018, ss. 1135-40.
Vancouver Gürel L, Güneş S. Samsun Sahili midye kabuklarının ağır metal giderim potansiyelinin belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24(6):1135-40.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.