Research Article
BibTex RIS Cite

Pamukkale (Denizli) bölgesi killerinin karakteristik özellikleri ve seramik sektöründe kullanılabilirlikleri

Year 2018, Volume: 24 Issue: 6, 1237 - 1244, 18.12.2018

Abstract

Pamukkale
(Denizli) bölgesinin kuzeydoğusunda yüzeyleyen Asartepe (LE2) ve Kızılburun
(LE3 ve LE4) formasyonlarından alınan üç adet kil örneğinin fiziko-kimyasal,
mineralojik ve termal özelliklerini incelemek için X-ışını floresans, termal
analiz, X-ışını kırınımı, Atterberg limitleri ve tane boyu analizi yöntemleri
kullanılmıştır. Farklı birimlerden alınan bu killerin kimyasal ve mineralojik
bileşimleri arasında çok büyük farklılıkların olmadıkları tespit edilmiştir.
Mineralojik olarak, kırmızı killerin (LE2) kuvars, az oranda hematit, kil
minerali olarak ise illit, az oranda kaolinit, klorit/simektit ve klorit
içerdiği belirlenmiştir. Marnlı killerin ise (LE3 ve LE4) kuvars, kalsit ve piroksen
içerdikleri kil minerali olarak da illit ve az klorit, kaolinit ve klorit/simektit
içerdikleri tespit edilmiştir. Kimyasal bileşim açısından, kırmızı killer
yüksek miktarda SiO2 (%52.0), Fe2O3 (%7.7) ve
Al2O3 (%19.2) içermekte marnlı killer ise daha az oranda
SiO2 (%40.1-44.5) ve Al2O3 (%12.7-14.0) ve
yüksek oranda CaO (13.2-16.5) ve MgO (%3.6-3.8) içerdikleri gözlenmektedir. Tüm
kil örneklerinin kızdırma kayıplarının (%14.2-17.7) yüksek olduğu
belirlenmiştir. Endüstriyel uygunluk değerlendirilmeleri kırmızı killerin yaygın
tuğla imalatı için yeterli özelliklere sahip olduğunu göstermektedir. Bununla
birlikte, marnlı killer ise ince cidarlı delikli ürünlerin imalatı için yeterli
özelliklere sahip olup, bazı değişikliklerle yaygın tuğla imalatında da
kullanılabilirler.

References

  • Konta J. “Clay and man: clay raw materials in the service of man”. Applied Clay Science, 10(4), 275-335, 1995.
  • Murray HH. “Applied clay mineralogy”, Developments in Clay Science 2, Elsevier B.V. 180 p 2007.
  • Mohmoudi S, Srasra E, Zargouni F. “The use of Tunisian Barremian clay in the traditional ceramic industry: Optimization of ceramic properties”. Applied Clay Science, 42(1-2), 125-129, 2008.
  • Manoharan C, Sutharsan P, Dhanapandian S, Venkatachalapathy R. “Characteristics of some clay materials from Tamilnadu, India, and their possible ceramic uses”. Cerâmica, 58 (347), 412-418, 2012.
  • Guggenheim S. In: Brady, J., Mogk, D.W., Perkins, D. (Eds.), Teaching Mineralogy. A workbook published by the Mineralogical Society of America (406 pp.), 1997.
  • Chang LLY. Industrial Mineralogy; Materials, Processes, and Uses. Prentice Hall, Upper Saddle River, New Jersey, 2002.
  • Kitouni S, Harabi A. “Sintering and mechanical properties of porcelains prepared from Algerian raw materials”. Cerâmica, 57(344), 453-460, 2011.
  • Celik H. “Technological characterization and industrial application of two Turkish clays for the ceramic industry”. Applied Clay Science, 50(2), 245-254, 2010.
  • Özkan İ, Çolak M, Oyman RE. “Characterization of waste clay from the Sardes (Salihli) placer gold mine and its utilization in floor-tile manufacture”. Applied Clay Science. 49(4), 420-425, 2010.
  • Söylemez M, Demir A, Onar AF. “Pişme sıcaklığının tuğlanın bazı fiziksel özelliklerine etkileri”. CBÜ Fen Bilimleri Dergisi. 7(2), 71-80, 2011.
  • Özkan İ. “Ceramic properties of a Turkish clay in the Aydın region”. Journal of Ceramic Processing Research, 15(1), 44-47, 2014.
  • Semiz B. “Characteristics of clay-rich raw materials for ceramic applications in Denizli region (Western Anatolia)”. Applied Clay Science, 137, 83-93, 2017.
  • Heiri O, Lotter AF, Lemcke G. “Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results”. Journal of Paleolimnology, 25(1), 101-110, 2001.
  • Brindley GW. “Quantitative X-ray mineral analysis of clays. In: Brindley, G.W., Brown, G. (Eds.), Crystal Structures of Clay Minerals and Their X-ray Identification, Monograph 5. Mineralogical Society, 411-438, London, 1980.
  • Yalçın H, Bozkaya Ö. “Alteration mineralogy and Geochemistry of the upper Cretaceous volcanics around Hekimhan (Malatya), central east Turkey: an example for the seawater-rock interaction”. Bulletin of Faculty of Engineering Cumhuriyet University, Earth Science, 19(1), 81-99, 2002.
  • Moore DM, Reynolds RC. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford (332 pp), 1997.
  • Casagrande A. Classification and identification of soils. ASCE Transactions Paper No. 2351, 1947.
  • Okay Aİ. “Denizli'nin güneyinde Menderes masifi ve Likya naplarının jeolojisi”. Bulletin Mineral Research Exploration, 109, 45-58, 1989.
  • Şimşek Ş. Denizli-Kızıldere-Tekkehamam-Tosunlar-Buldan-Yenice alanının jeolojisi ve jeotermal enerji olanakları. Mineral Res. Expl. Direct. Turkey (MTA), Scientific Report No: 7846, 85. Ankara, Turkey, 1984.
  • Sun S. Denizli-Uşak Arasının Jeolojisi ve Linyit Olanakları. General Directorate of Mineral Research and Exploration Institute of Turkey (MTA), Ankara, Scientific Report No: 9985, 92, 1990.
  • Alçiçek H, Varol B, Özkul M. “Sedimentary facies, depositional environments and palaeogeographic evolution of the Neogene Denizli Basin, SW Anatolia, Turkey”. Sedimentary Geology, 202(4), 596-637, 2007.
  • Erten H, Sen S, Görmüş M. “Middle and late Miocene Cricetidae (Rodentia, Mammalia) from Deni̇zli̇ Basin (southwestern Turkey) and a new species of Megacricetodon”. Journal of Paleontology, 88(3), 504-518, 2014.
  • Murray HH. “Traditional and new applications for kaolin, smectite, palygorskite: a general overview”. Applied Clay Science, 17(5-6), 207-221, 2000.
  • Ekosse GE, Ngole V, Sendze Y, Ayonghe SN, “Environmental mineralogy of unconsolidated surface sediments associated with the 2001 landslides on volcanic cones, Mabeta New Layout, Limbe, Cameroon”. Global Journal of Environmental Studies, 4(2), 11-122, 2005.
  • Diko ML, Ekosse GE, Ayonghe SN, Ntasin EB. “Physical characterization of clayey materials from tertiary volcanic cones in Limbe (Cameroon) for ceramic applications”. Applied Clay Science, 51(3), 380-384, 2011.
  • Dondi M, Fabbri B, Laviano R. “Characteristics of the clays utilized in the brick industry in Apulia and Basilicata (Southern Italy)”. Mineral Petrologica Acta, 35, 181-191, 1992.
  • Bergaya F, Theng BKG, Lagaly G. Handbook of clay science. Developments in Clay Science, vol. 1. Elsevier Ltd., 2006.
  • Hajjaji W, Moussi B, Hachani M, Medhioub M, Lopez-Galindo A, Rocha F, Labrincha JA, Jamoussi F. “The potential use of Tithonian-Barremian detrital deposits from central Tunisia as raw materials for ceramic tiles and pigments”. Applied Clay Science, 48(4), 552-560, 2010.
  • Ngun BK, Mohamad H, Sulaiman SK, Okada K, Ahmad ZA. “Some ceramic properties of clays from central Cambodia”. Applied Clay Science, 53(1), 33-41, 2011.
  • Holtz RD, Kovacs WD. “An introduction to Geotechnical Engineering”, Prentice- Hall, Inc., New Jersey, USA, 1981.
  • Casagrande A. “Plascticity chart for the classification of cohesive soils”. Transactions, American Society of Civil Engineers, 113, 901, 1948.
  • Milheiro FAC, Freire MN, Silva AGP, Holanda JNF. “Densification behavior of a red firing Brazilian kaolinitic clay”. Ceramics International, 31(5), 757-763, 2005.
  • Cultrone G, Sebastian E, Elerk K, De la Torre MJ, Cazalla O, Rodriguez-Navarro C. “Influence of mineralogy and firing temperature on the porosity of bricks”. Journal of the European Ceramic Society, 24(3), 547-56, 2004.
  • Meseguer S, Pardo F, Jordán MM, Sanfeliu T, González I. “Ceramic behavior of five Chilean clays which can be used in the manufacture of ceramic tile bodies”. Applied Clay Science, 47(3-4), 372-377, 2010.
  • Dondi M, Raimondo M, Zanelli C. “Clays and bodies for ceramic tiles: Reappraisal and technological classification”. Applied Clay Science, 96, 91-109, 2014.

Characteristics of clays from Pamukkale (Denizli) region and their usability in ceramic sector

Year 2018, Volume: 24 Issue: 6, 1237 - 1244, 18.12.2018

Abstract

X-Ray
fluorescence, thermal analyses, X-Ray diffractions, Attenberg limits, and
particle size analyses are used to determine mineralogical, physico-chemical,
and thermal properties of three clays from the Asartepe (LE2) and Kızılburun
(LE3 and LE4) formations from northeastern of the Pamukkale (Denizli) region. There
are no significant differences between the samples with respect to their chemical
and mineralogical compositions. Mineralogically, red clays (LE2) comprise mainly
quartz and small amount hematite, illite as
clay minerals, and chlorite, kaolinite
and chlorite/smectite as minor clay minerals. Marl clays (LE3 and LE4) were
also rich in quartz, calcite, and pyroxene minerals, illite and a small amount
of chlorite, kaolinite and chlorite/smectite as clay minerals.
Chemically, red clays consist of high amount of SiO2
(52.0%), Fe2O3 (7.7%) and Al2O3
(19.2%) and marly clays have also lower SiO2 (40.1-44.5%), Al2O3
(12.7-14.0%), and higher CaO (13.2-16.5) and MgO (3.6-3.8%) compositions. LOI (14.2-17.7%)
contents of the all clay samples are high. As a result, in industrial
suitability point of view, characteristics of red clays are suitable for common
brick manufacturing. However, marly clays have favourable properties for thin-walled
hollow brick production and can be used for manufacturing of common brick with
some modification.

References

  • Konta J. “Clay and man: clay raw materials in the service of man”. Applied Clay Science, 10(4), 275-335, 1995.
  • Murray HH. “Applied clay mineralogy”, Developments in Clay Science 2, Elsevier B.V. 180 p 2007.
  • Mohmoudi S, Srasra E, Zargouni F. “The use of Tunisian Barremian clay in the traditional ceramic industry: Optimization of ceramic properties”. Applied Clay Science, 42(1-2), 125-129, 2008.
  • Manoharan C, Sutharsan P, Dhanapandian S, Venkatachalapathy R. “Characteristics of some clay materials from Tamilnadu, India, and their possible ceramic uses”. Cerâmica, 58 (347), 412-418, 2012.
  • Guggenheim S. In: Brady, J., Mogk, D.W., Perkins, D. (Eds.), Teaching Mineralogy. A workbook published by the Mineralogical Society of America (406 pp.), 1997.
  • Chang LLY. Industrial Mineralogy; Materials, Processes, and Uses. Prentice Hall, Upper Saddle River, New Jersey, 2002.
  • Kitouni S, Harabi A. “Sintering and mechanical properties of porcelains prepared from Algerian raw materials”. Cerâmica, 57(344), 453-460, 2011.
  • Celik H. “Technological characterization and industrial application of two Turkish clays for the ceramic industry”. Applied Clay Science, 50(2), 245-254, 2010.
  • Özkan İ, Çolak M, Oyman RE. “Characterization of waste clay from the Sardes (Salihli) placer gold mine and its utilization in floor-tile manufacture”. Applied Clay Science. 49(4), 420-425, 2010.
  • Söylemez M, Demir A, Onar AF. “Pişme sıcaklığının tuğlanın bazı fiziksel özelliklerine etkileri”. CBÜ Fen Bilimleri Dergisi. 7(2), 71-80, 2011.
  • Özkan İ. “Ceramic properties of a Turkish clay in the Aydın region”. Journal of Ceramic Processing Research, 15(1), 44-47, 2014.
  • Semiz B. “Characteristics of clay-rich raw materials for ceramic applications in Denizli region (Western Anatolia)”. Applied Clay Science, 137, 83-93, 2017.
  • Heiri O, Lotter AF, Lemcke G. “Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results”. Journal of Paleolimnology, 25(1), 101-110, 2001.
  • Brindley GW. “Quantitative X-ray mineral analysis of clays. In: Brindley, G.W., Brown, G. (Eds.), Crystal Structures of Clay Minerals and Their X-ray Identification, Monograph 5. Mineralogical Society, 411-438, London, 1980.
  • Yalçın H, Bozkaya Ö. “Alteration mineralogy and Geochemistry of the upper Cretaceous volcanics around Hekimhan (Malatya), central east Turkey: an example for the seawater-rock interaction”. Bulletin of Faculty of Engineering Cumhuriyet University, Earth Science, 19(1), 81-99, 2002.
  • Moore DM, Reynolds RC. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford (332 pp), 1997.
  • Casagrande A. Classification and identification of soils. ASCE Transactions Paper No. 2351, 1947.
  • Okay Aİ. “Denizli'nin güneyinde Menderes masifi ve Likya naplarının jeolojisi”. Bulletin Mineral Research Exploration, 109, 45-58, 1989.
  • Şimşek Ş. Denizli-Kızıldere-Tekkehamam-Tosunlar-Buldan-Yenice alanının jeolojisi ve jeotermal enerji olanakları. Mineral Res. Expl. Direct. Turkey (MTA), Scientific Report No: 7846, 85. Ankara, Turkey, 1984.
  • Sun S. Denizli-Uşak Arasının Jeolojisi ve Linyit Olanakları. General Directorate of Mineral Research and Exploration Institute of Turkey (MTA), Ankara, Scientific Report No: 9985, 92, 1990.
  • Alçiçek H, Varol B, Özkul M. “Sedimentary facies, depositional environments and palaeogeographic evolution of the Neogene Denizli Basin, SW Anatolia, Turkey”. Sedimentary Geology, 202(4), 596-637, 2007.
  • Erten H, Sen S, Görmüş M. “Middle and late Miocene Cricetidae (Rodentia, Mammalia) from Deni̇zli̇ Basin (southwestern Turkey) and a new species of Megacricetodon”. Journal of Paleontology, 88(3), 504-518, 2014.
  • Murray HH. “Traditional and new applications for kaolin, smectite, palygorskite: a general overview”. Applied Clay Science, 17(5-6), 207-221, 2000.
  • Ekosse GE, Ngole V, Sendze Y, Ayonghe SN, “Environmental mineralogy of unconsolidated surface sediments associated with the 2001 landslides on volcanic cones, Mabeta New Layout, Limbe, Cameroon”. Global Journal of Environmental Studies, 4(2), 11-122, 2005.
  • Diko ML, Ekosse GE, Ayonghe SN, Ntasin EB. “Physical characterization of clayey materials from tertiary volcanic cones in Limbe (Cameroon) for ceramic applications”. Applied Clay Science, 51(3), 380-384, 2011.
  • Dondi M, Fabbri B, Laviano R. “Characteristics of the clays utilized in the brick industry in Apulia and Basilicata (Southern Italy)”. Mineral Petrologica Acta, 35, 181-191, 1992.
  • Bergaya F, Theng BKG, Lagaly G. Handbook of clay science. Developments in Clay Science, vol. 1. Elsevier Ltd., 2006.
  • Hajjaji W, Moussi B, Hachani M, Medhioub M, Lopez-Galindo A, Rocha F, Labrincha JA, Jamoussi F. “The potential use of Tithonian-Barremian detrital deposits from central Tunisia as raw materials for ceramic tiles and pigments”. Applied Clay Science, 48(4), 552-560, 2010.
  • Ngun BK, Mohamad H, Sulaiman SK, Okada K, Ahmad ZA. “Some ceramic properties of clays from central Cambodia”. Applied Clay Science, 53(1), 33-41, 2011.
  • Holtz RD, Kovacs WD. “An introduction to Geotechnical Engineering”, Prentice- Hall, Inc., New Jersey, USA, 1981.
  • Casagrande A. “Plascticity chart for the classification of cohesive soils”. Transactions, American Society of Civil Engineers, 113, 901, 1948.
  • Milheiro FAC, Freire MN, Silva AGP, Holanda JNF. “Densification behavior of a red firing Brazilian kaolinitic clay”. Ceramics International, 31(5), 757-763, 2005.
  • Cultrone G, Sebastian E, Elerk K, De la Torre MJ, Cazalla O, Rodriguez-Navarro C. “Influence of mineralogy and firing temperature on the porosity of bricks”. Journal of the European Ceramic Society, 24(3), 547-56, 2004.
  • Meseguer S, Pardo F, Jordán MM, Sanfeliu T, González I. “Ceramic behavior of five Chilean clays which can be used in the manufacture of ceramic tile bodies”. Applied Clay Science, 47(3-4), 372-377, 2010.
  • Dondi M, Raimondo M, Zanelli C. “Clays and bodies for ceramic tiles: Reappraisal and technological classification”. Applied Clay Science, 96, 91-109, 2014.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Barış Semiz 0000-0003-1263-4599

Publication Date December 18, 2018
Published in Issue Year 2018 Volume: 24 Issue: 6

Cite

APA Semiz, B. (2018). Pamukkale (Denizli) bölgesi killerinin karakteristik özellikleri ve seramik sektöründe kullanılabilirlikleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(6), 1237-1244.
AMA Semiz B. Pamukkale (Denizli) bölgesi killerinin karakteristik özellikleri ve seramik sektöründe kullanılabilirlikleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. December 2018;24(6):1237-1244.
Chicago Semiz, Barış. “Pamukkale (Denizli) bölgesi Killerinin Karakteristik özellikleri Ve Seramik sektöründe kullanılabilirlikleri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24, no. 6 (December 2018): 1237-44.
EndNote Semiz B (December 1, 2018) Pamukkale (Denizli) bölgesi killerinin karakteristik özellikleri ve seramik sektöründe kullanılabilirlikleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24 6 1237–1244.
IEEE B. Semiz, “Pamukkale (Denizli) bölgesi killerinin karakteristik özellikleri ve seramik sektöründe kullanılabilirlikleri”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 24, no. 6, pp. 1237–1244, 2018.
ISNAD Semiz, Barış. “Pamukkale (Denizli) bölgesi Killerinin Karakteristik özellikleri Ve Seramik sektöründe kullanılabilirlikleri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24/6 (December 2018), 1237-1244.
JAMA Semiz B. Pamukkale (Denizli) bölgesi killerinin karakteristik özellikleri ve seramik sektöründe kullanılabilirlikleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24:1237–1244.
MLA Semiz, Barış. “Pamukkale (Denizli) bölgesi Killerinin Karakteristik özellikleri Ve Seramik sektöründe kullanılabilirlikleri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 24, no. 6, 2018, pp. 1237-44.
Vancouver Semiz B. Pamukkale (Denizli) bölgesi killerinin karakteristik özellikleri ve seramik sektöründe kullanılabilirlikleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24(6):1237-44.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif