Research Article
BibTex RIS Cite

Doğal lif takviyeli mantar esaslı sandviç kompozitlerin viskoelastik özellikleri

Year 2018, Volume: 24 Issue: 7, 1257 - 1261, 28.12.2018

Abstract

Doğal
lif takviyeli kompozit malzemeler çevre dostu, ucuz ve sürdürülebilir
malzemeler olması bakımından endüstride pek çok kullanım alanı bulmaktadır. Bu
çalışmada jüt lifi takviyeli ve mantar esaslı sandviç kompozitler üretilerek
viskoelastik özellikleri incelenmiştir. Bu amaçla öncelikle jüt
lifi/polipropilen (PP) karışımı dokusuz yüzey (nonwoven) kumaşlar ve PP granül
kullanılarak ince jüt/PP kompozit plakalar üretilmiştir. Üretilen bu plakalar
bir adet mantar levhanın alt ve üst yüzeyine konumlandırılarak basınç altında
birleştirilmiş ve sandviç yapılar oluşturulmuştur. Üretilen sandviç yapıların
viskoelastik özelliklerini belirlemek amacıyla dinamik mekanik analiz (DMA)
testi gerçekleştirilmiştir. Kompozit üretiminden önce liflere uygulanan sodyum
hidroksit (NaOH) işleminin kompozit mekanik özelliklerini geliştirdiği
gözlemlenmiştir. Üretilen sandviç kompozitlerin inşaat sektöründe yalıtım
malzemesi olarak ve ofis alan ayırma panellerinde, aynı zamanda otomotiv
endüstrisinde kullanımı amaçlanmaktadır.

References

  • Bledzki AK, Gassan J. “Composites reinforced with cellulose based fibres”. Progress in Polymer Science (Oxford), 24(2), 221-274, 1999.
  • Mohanty AK, Misra M, Hinrichsen G. “Biofibres, biodegradable polymers and biocomposites: An overview”. Macromolecular Materials and Engineering, 276-2771-24, 2000.
  • Faruk O, Bledzki AK, Fink HP, Sain M. “Biocomposites reinforced with natural fibers: 2000-2010”. Progress in Polymer Science, 37(11), 1552-1596, 2012.
  • Bledzki AK, Faruk O, Sperber VE. “Cars from bio-fibres”. Macromolecular Materials and Engineering, 291(5), 449-457, 2006.
  • Mehta G, Mohanty AK, Thayer K, Misra M, Drzal LT. “Novel biocomposites sheet molding compounds for low cost housing panel applications”. Journal of Polymers and the Environment, 13(2), 169-175, 2005.
  • Wambua P, Ivens J, Verpoest I. “Natural fibres: Can they replace glass in fibre reinforced plastics?”. Composites Science and Technology, 63(9), 1259-1264, 2003.
  • Joshi S V., Drzal LT, Mohanty AK, Arora S. “Are natural fiber composites environmentally superior to glass fiber reinforced composites?”. Composites Part A: Applied Science and Manufacturing, 35(3), 371-376, 2004.
  • Onal L, Karaduman Y. “Mechanical characterization of carpet waste natural fiber-reinforced polymer composites”. Journal of Composite Materials, 43(16), 1751-1768, 2009.
  • Karaduman Y, Onal L. “Water absorption behavior of carpet waste jute-reinforced polymer composites”. Journal of Composite Materials, 45(15), 1559-1571, 2011.
  • De Fatima V. Marques M, Melo RP, Da S. Araujo R, Do N. Lunz J, De O, Aguiar V. “Improvement of mechanical properties of natural fiber-polypropylene composites using successive alkaline treatments”. Journal of Applied Polymer Science, 132(12), 1-12, 2015.
  • Siddika S, Mansura F, Hasan M, Hassan A. “Effect of reinforcement and chemical treatment of fiber on The Properties of jute-coir fiber reinforced hybrid polypropylene composites”. Fibers and Polymers, 15(5), 1023-1028, 2014.
  • Sudha S, Thilagavathi G. “Effect of alkali treatment on mechanical properties of woven jute composites”. Journal of the Textile Institute, 107(6), 691-701, 2016.
  • Sudha S, Thilagavathi G. “Analysis of electrical, thermal and compressive properties of alkali-treated jute fabric reinforced composites”. Journal of Industrial Textiles, 47(6), 1407-1423, 2018.
  • Lakshmanan A, Ghosh RK, Dasgupta S, Chakraborty S, Ganguly PK. “Optimization of alkali treatment condition on jute fabric for the development of rigid biocomposite”. Journal of Industrial Textiles, 47(5), 640-655, 2018.
  • Shanmugam D, Thiruchitrambalam M. “Influence of alkali treatment and layering pattern on the tensile and flexural properties of Palmyra palm leaf stalk fiber (PPLSF)/jute fiber polyester hybrid composites”. Composite Interfaces, 21(1), 3-12, 2014.
  • Zafar MT, Maiti SN, Ghosh AK. “Effect of surface treatment of jute fibers on the interfacial adhesion in poly(lactic acid)/jute fiber biocomposites”. Fibers and Polymers, 17(2), 266-274, 2016.
  • Sathishkumar S, Suresh A V, Nagamadhu M, Krishna M. “The effect of alkaline treatment on their properties of Jute fiber mat and its vinyl ester composites”. Materials Today: Proceedings, 4(2, Part A), 3371-3379, 2017.
  • Gunti R, Ratna Prasad A V., Gupta AVSSKS. “Preparation and properties of successive alkali treated completely biodegradable short jute fiber reinforced PLA composites”. Polymer Composites, 37(7), 2160-2170, 2016.
  • Rana a K, Mitra BC, Banerjee a N. “Short jute fiber-reinforced polypropylene composites: Dynamic mechanical study”. Journal of Applied Polymer Science, 71(4), 531-539, 1999.
  • Ray D, Sarkar BK, Das S, Rana AK. “Dynamic mechanical and thermal analysis of vinylester-resin-matrix composites reinforced with untreated and alkali-treated jute fibres”. Composites Science and Technology, 62(7-8), 911-917, 2002.
  • Karaduman Y, Onal L. “Dynamic mechanical and thermal properties of enzyme-treated jute/polyester composites”. Journal of Composite Materials, 47(19), 2361-2370, 2013.
  • Shanmugam D, Thiruchitrambalam M. “Static and dynamic mechanical properties of alkali treated unidirectional continuous Palmyra Palm Leaf Stalk Fiber/jute fiber reinforced hybrid polyester composites”. Materials and Design, 50(1), 533-542, 2013.
  • Karaduman Y, Sayeed MMA, Onal L, Rawal A. “Viscoelastic properties of surface modified jute fiber/polypropylene nonwoven composites”. Composites Part B: Engineering, 67(1), 111-118, 2014.
  • Saha P, Manna S, Chowdhury SR, Sen R, Roy D, Adhikari B. “Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment”. Bioresource Technology, 101(9), 3182-3187, 2010.
  • Joseph P, Mathew G, Joseph K, Groeninckx G, Thomas S. “Dynamic mechanical properties of short sisal fibre reinforced polypropylene composites”. Composites Part A Applied Science and Manufacturing, 34(3), 275-290, 2003.

Viscoelastic properties of natural fiber reinforced cork based sandwich composites

Year 2018, Volume: 24 Issue: 7, 1257 - 1261, 28.12.2018

Abstract

Natural
fiber reinforced composite materials have found many applications in various
industries due to the fact that they are nature-friendly, low-cost and
sustainable materials. In this study, jute fiber reinforced and cork based
sandwich composites were produced and their viscoelastic properties were
investigated. First, thin jute/polypropylene (PP) composite plates were
produced by using jute/PP nonwoven fabrics and PP granules. Then these plates
were placed on top and bottom faces of a cork plate and consolidated under
pressure to produce sandwich composites. Dynamic mechanical analysis (DMA) was
performed to determine the viscoelastic properties of the produced samples. It
was found that sodium hydroxide (NaOH) treatment of fibers before composite
preparation lead to higher mechanical properties of the composites. The
produced sandwich composites can be used in construction industry as insulation
materials and office partition panels as well as in automotive industry.

References

  • Bledzki AK, Gassan J. “Composites reinforced with cellulose based fibres”. Progress in Polymer Science (Oxford), 24(2), 221-274, 1999.
  • Mohanty AK, Misra M, Hinrichsen G. “Biofibres, biodegradable polymers and biocomposites: An overview”. Macromolecular Materials and Engineering, 276-2771-24, 2000.
  • Faruk O, Bledzki AK, Fink HP, Sain M. “Biocomposites reinforced with natural fibers: 2000-2010”. Progress in Polymer Science, 37(11), 1552-1596, 2012.
  • Bledzki AK, Faruk O, Sperber VE. “Cars from bio-fibres”. Macromolecular Materials and Engineering, 291(5), 449-457, 2006.
  • Mehta G, Mohanty AK, Thayer K, Misra M, Drzal LT. “Novel biocomposites sheet molding compounds for low cost housing panel applications”. Journal of Polymers and the Environment, 13(2), 169-175, 2005.
  • Wambua P, Ivens J, Verpoest I. “Natural fibres: Can they replace glass in fibre reinforced plastics?”. Composites Science and Technology, 63(9), 1259-1264, 2003.
  • Joshi S V., Drzal LT, Mohanty AK, Arora S. “Are natural fiber composites environmentally superior to glass fiber reinforced composites?”. Composites Part A: Applied Science and Manufacturing, 35(3), 371-376, 2004.
  • Onal L, Karaduman Y. “Mechanical characterization of carpet waste natural fiber-reinforced polymer composites”. Journal of Composite Materials, 43(16), 1751-1768, 2009.
  • Karaduman Y, Onal L. “Water absorption behavior of carpet waste jute-reinforced polymer composites”. Journal of Composite Materials, 45(15), 1559-1571, 2011.
  • De Fatima V. Marques M, Melo RP, Da S. Araujo R, Do N. Lunz J, De O, Aguiar V. “Improvement of mechanical properties of natural fiber-polypropylene composites using successive alkaline treatments”. Journal of Applied Polymer Science, 132(12), 1-12, 2015.
  • Siddika S, Mansura F, Hasan M, Hassan A. “Effect of reinforcement and chemical treatment of fiber on The Properties of jute-coir fiber reinforced hybrid polypropylene composites”. Fibers and Polymers, 15(5), 1023-1028, 2014.
  • Sudha S, Thilagavathi G. “Effect of alkali treatment on mechanical properties of woven jute composites”. Journal of the Textile Institute, 107(6), 691-701, 2016.
  • Sudha S, Thilagavathi G. “Analysis of electrical, thermal and compressive properties of alkali-treated jute fabric reinforced composites”. Journal of Industrial Textiles, 47(6), 1407-1423, 2018.
  • Lakshmanan A, Ghosh RK, Dasgupta S, Chakraborty S, Ganguly PK. “Optimization of alkali treatment condition on jute fabric for the development of rigid biocomposite”. Journal of Industrial Textiles, 47(5), 640-655, 2018.
  • Shanmugam D, Thiruchitrambalam M. “Influence of alkali treatment and layering pattern on the tensile and flexural properties of Palmyra palm leaf stalk fiber (PPLSF)/jute fiber polyester hybrid composites”. Composite Interfaces, 21(1), 3-12, 2014.
  • Zafar MT, Maiti SN, Ghosh AK. “Effect of surface treatment of jute fibers on the interfacial adhesion in poly(lactic acid)/jute fiber biocomposites”. Fibers and Polymers, 17(2), 266-274, 2016.
  • Sathishkumar S, Suresh A V, Nagamadhu M, Krishna M. “The effect of alkaline treatment on their properties of Jute fiber mat and its vinyl ester composites”. Materials Today: Proceedings, 4(2, Part A), 3371-3379, 2017.
  • Gunti R, Ratna Prasad A V., Gupta AVSSKS. “Preparation and properties of successive alkali treated completely biodegradable short jute fiber reinforced PLA composites”. Polymer Composites, 37(7), 2160-2170, 2016.
  • Rana a K, Mitra BC, Banerjee a N. “Short jute fiber-reinforced polypropylene composites: Dynamic mechanical study”. Journal of Applied Polymer Science, 71(4), 531-539, 1999.
  • Ray D, Sarkar BK, Das S, Rana AK. “Dynamic mechanical and thermal analysis of vinylester-resin-matrix composites reinforced with untreated and alkali-treated jute fibres”. Composites Science and Technology, 62(7-8), 911-917, 2002.
  • Karaduman Y, Onal L. “Dynamic mechanical and thermal properties of enzyme-treated jute/polyester composites”. Journal of Composite Materials, 47(19), 2361-2370, 2013.
  • Shanmugam D, Thiruchitrambalam M. “Static and dynamic mechanical properties of alkali treated unidirectional continuous Palmyra Palm Leaf Stalk Fiber/jute fiber reinforced hybrid polyester composites”. Materials and Design, 50(1), 533-542, 2013.
  • Karaduman Y, Sayeed MMA, Onal L, Rawal A. “Viscoelastic properties of surface modified jute fiber/polypropylene nonwoven composites”. Composites Part B: Engineering, 67(1), 111-118, 2014.
  • Saha P, Manna S, Chowdhury SR, Sen R, Roy D, Adhikari B. “Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment”. Bioresource Technology, 101(9), 3182-3187, 2010.
  • Joseph P, Mathew G, Joseph K, Groeninckx G, Thomas S. “Dynamic mechanical properties of short sisal fibre reinforced polypropylene composites”. Composites Part A Applied Science and Manufacturing, 34(3), 275-290, 2003.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Yekta Karaduman This is me 0000-0001-6960-3828

Publication Date December 28, 2018
Published in Issue Year 2018 Volume: 24 Issue: 7

Cite

APA Karaduman, Y. (2018). Doğal lif takviyeli mantar esaslı sandviç kompozitlerin viskoelastik özellikleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(7), 1257-1261.
AMA Karaduman Y. Doğal lif takviyeli mantar esaslı sandviç kompozitlerin viskoelastik özellikleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. December 2018;24(7):1257-1261.
Chicago Karaduman, Yekta. “Doğal Lif Takviyeli Mantar Esaslı Sandviç Kompozitlerin Viskoelastik özellikleri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24, no. 7 (December 2018): 1257-61.
EndNote Karaduman Y (December 1, 2018) Doğal lif takviyeli mantar esaslı sandviç kompozitlerin viskoelastik özellikleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24 7 1257–1261.
IEEE Y. Karaduman, “Doğal lif takviyeli mantar esaslı sandviç kompozitlerin viskoelastik özellikleri”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 24, no. 7, pp. 1257–1261, 2018.
ISNAD Karaduman, Yekta. “Doğal Lif Takviyeli Mantar Esaslı Sandviç Kompozitlerin Viskoelastik özellikleri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24/7 (December 2018), 1257-1261.
JAMA Karaduman Y. Doğal lif takviyeli mantar esaslı sandviç kompozitlerin viskoelastik özellikleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24:1257–1261.
MLA Karaduman, Yekta. “Doğal Lif Takviyeli Mantar Esaslı Sandviç Kompozitlerin Viskoelastik özellikleri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 24, no. 7, 2018, pp. 1257-61.
Vancouver Karaduman Y. Doğal lif takviyeli mantar esaslı sandviç kompozitlerin viskoelastik özellikleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24(7):1257-61.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif