Research Article
BibTex RIS Cite

Mikro boyutta pH temelli potansiyometrik glikoz biyosensör

Year 2018, Volume: 24 Issue: 7, 1355 - 1359, 28.12.2018

Abstract

Günümüzdeki
bilimsel ve teknik ilerlemeler, biyosensör teknolojisinde önemli gelişmelere
yol açarak biyosensörlerin gıda teknolojileri, çevre, farmasi ve klinik teşhis,
biyokimya, analitik kimya gibi alanlarda yaygın olarak kullanılmasına neden
olmuştur. Potansiyometrik biyosensörlerin hazırlanmasında kullanılan
iyon-seçici sensör teknolojisindeki gelişmeler ve sensör materyallerin
sayılarının artması, yeni tip potansiyometrik biyosensörlerin geliştirilmesini
de hızlandırmıştır. Nitekim, bu çalışmada, kompozit pH sensörüne dayalı yeni
bir mikro boyutlu potansiyometrik glikoz biyosensörünün geliştirilmesi ele
alınmıştır. Glikoz oksidaz, biyotanıma elemanı olarak kompozit tabaka üzerinde
immobilize edildi. Kompozit pH algılama esaslı glikoz biyosensör matriksinin
yüzeyi ilk olarak elektrokimyasal tanımlama için dönüşümlü voltametri ve
elektrokimyasal impedans spektroskopisi kullanılarak incelendi. Yüksek elektron
transfer hızı, biyosensörün kararlı bir tepki davranışına sahip olduğunu ve
glikozun saptanması için uygun bir potansiyometrik sensör olduğunu
göstermektedir. Glikozun potansiyometrik tespiti için 2x10-5 mol/L
saptama sınırı ile 5x10-5 ila 1x10-1 mol/ L konsantrasyon
aralığında lineer bir cevap elde edildi. Biyosensör hızlı bir tepki süresi (10
s) gösterdi, iyi bir kararlılığa ve uzun bir ömre sahipti.

References

  • Liu Y, Yu T. “Polymers and enzyme biosensors”. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry & Physics, 37( 3), 459-500, 1997.
  • Ófagain C. “Enzyme stabilization-recent experimental progress”. Enzyme and Microbial Technology, 33(2-3) 137-149, 2003.
  • Ófagain C, Ruzgas T, Gorton L, Csoregi E, Ardila GB, Sakharov IU, Gazaryan, I.G. “Biosensors based on novel peroxidases with improved properties in direct and mediated electron transfer”. Biosensors and Bioelectronics, 15(9-10), 491- 497, 2000.
  • Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Ronco JJ. “Intensive versus conventional glucose control in critically ill patients”. The New England Journal of Medicine - Journals, 360(13),1283-1297, 2009.
  • Wiener R, Wiener D, Larson R. “Benefits and risks of tight glucose control in critically ill adults: a meta-analysis”. Journal of the American Medical Association, 300(8), 933- 944, 2008.
  • Krinsley J, Grover A. “Severe hypoglycemia in critically ill: risk and outcomes”. The Journal of Critical Care Medicine, 36(4), 1390-1391, 2008.
  • Anger K, Szumita P. “Barriers to glucose control in the intensive care unit”. Pharmacotherapy, 26(2), 214-228, 2006.
  • Vriesendorp T, Devries J, Holleman F, Dzoljic M, Hoekstra J. “The use of two continuous glucose sensors during and after surgery”. Diabetes Technology and Therapeutics- Journals, 7(2), 315-322, 2005.
  • Kovatchev B, Anderson S, Heinemann L, Clarke W. “Comparison of the numerical and clinical accuracy of four continuous glucose monitors”. Diabetes Care Journal, 31(6), 1160 -1164, 2008.
  • Koschinsky T, Heinemann L. “Sensors for Glucose monitoring: technical and clinical aspects”. Diabetes/Metabolism Research and Reviews, 17(2), 113-123, 2001.
  • Oliver NS, Toumazou C, Cass AEG, Johnston DG. “Glucose sensors: a review of current and emerging technology”. Diabetic Medicine-Journals, 26(3),197-210, 2009.
  • Lin Y, Lu F, Tu Y, Ren Z. "Glucose biosensors based on carbon nanotube nanoelectrode ensembles”. Nano Letters, 4(2), 191-195, 2004.
  • Lindgren A, Ruzgas T, Gorton L, Csoregi E, Ardila GB, Sakharov IU, Gazaryan IG. “Biosensors based on novel peroxidases with improved properties in direct and mediated electron transfer”. Biosensors and Bioelectronics, 15(9-10), 491-497, 2000.
  • Tınkılıc N, Cubuk O, Isildak I. “Glucose and urea biosensors based on all solid-state contact PVC-NH2 membrane electrodes”. Analytica Chimica Acta, 452(1), 24-29, 2002.
  • Pörksen JR, Isildak I, Andac M, Yolcu M, Kahlert H, Scholz F, Behnert J. “Application of a new pH-sensitive electrode as a detector in flow ınjection potentiometry”. Electroanalysis, 17(12), 1085-1090, 2005.
  • Rekha K, Gouda MD, Thakur MS, Karanth NG. “Ascorbate oxidase based amperometric biosensor for organophosphorous pesticide monitoring”. Biosensors and Bioelectronic, 15(9-10),499-502, 2000.
  • Updike SJ, Gilligan BJ, Shults MC, Rhodes RK. “A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration”. Diabetes Care, 23(2), 208-214, 2000.
  • Aussedat B, Thome-Duret V, Reach G, Lemmonier F, Klein JC, Hu L, Wilson GS. “A user-friendly method for calibrating a subcutaneous glucose sensor-based hypoglycemic alarm”. Biosensors and Bioelectronics, 12(11), 1061-1071, 1997.
  • Lenigk R, Lam E, Lai A, Wang H, Han Y, Carlier P, Renneberg R. “Enzyme biosensor for studying therapeutics of Alzheimer’s disease”. Biosensors and Bioelectronics, 15(9-10), 541-547, 2000.
  • Ramsay G, Wolpert SM. “Utility of wiring nitrate reductase by alkylpyrroleviologen-based redox polymers for electrochemical biosensor and bioreactor applications”. Analytical Chemistry, 71(2), 504-506, 1999.
  • Bozkurter Cil AT, Bicakci U, Isildak I, Ariturk, E. “pH and antioxidant measurements in rats with testicular torsion and their correlation with viability”. Journal of Pediatric Surgery, 51(10), 1716-1720, 2016.
  • Yolcu, M. Dere, N. “All-Solid-State Potentiometric Cu(II)-Selective Sensor Based on Ion Imprinted Methacrylamide Polymer”. Electroanalysis, 30(6), 1-9, 2018.

Micro-Sized glucose biosensor based on composite pH sensor

Year 2018, Volume: 24 Issue: 7, 1355 - 1359, 28.12.2018

Abstract

Today's
scientific and technical advances have led to significant advances in biosensor
technology, leading to widespread use of biosensors in areas such as food
technology, the environment, pharmaceuticals and clinical diagnostics,
biochemistry, and analytical chemistry. Improvements in the ion-selective
sensor technology used in the preparation of potentiometric biosensors and the
increase in the number of sensor materials have also accelerated the
development of new types of potentiometric biosensors. Thus, in this study,
information is given on the development of a new micro sized potentiometric
glucose biosensor based on composite pH sensor. Glucose oxidase was immobilized
on the composite layer as the biorecognition element. The surface of glucose
biosensor based composite pH sensing matrices was first examined for
electrochemical elucidation by using cyclic voltammetry and electrochemical
impedance spectroscopy. The rate of electron transfer resulted in a stable
response behavior of the biosensor and made it a suitable potentiometric sensor
for detection of glucose. A linear response in concentration range from 5x10-5
to 1x10-1 mol/L was obtained with a detection limit of 2x10-5
mol/L for the potentiometric detection of glucose. The biosensor exhibited a
fast response time (10 s), had good stability, and an extended lifetime.

References

  • Liu Y, Yu T. “Polymers and enzyme biosensors”. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry & Physics, 37( 3), 459-500, 1997.
  • Ófagain C. “Enzyme stabilization-recent experimental progress”. Enzyme and Microbial Technology, 33(2-3) 137-149, 2003.
  • Ófagain C, Ruzgas T, Gorton L, Csoregi E, Ardila GB, Sakharov IU, Gazaryan, I.G. “Biosensors based on novel peroxidases with improved properties in direct and mediated electron transfer”. Biosensors and Bioelectronics, 15(9-10), 491- 497, 2000.
  • Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Ronco JJ. “Intensive versus conventional glucose control in critically ill patients”. The New England Journal of Medicine - Journals, 360(13),1283-1297, 2009.
  • Wiener R, Wiener D, Larson R. “Benefits and risks of tight glucose control in critically ill adults: a meta-analysis”. Journal of the American Medical Association, 300(8), 933- 944, 2008.
  • Krinsley J, Grover A. “Severe hypoglycemia in critically ill: risk and outcomes”. The Journal of Critical Care Medicine, 36(4), 1390-1391, 2008.
  • Anger K, Szumita P. “Barriers to glucose control in the intensive care unit”. Pharmacotherapy, 26(2), 214-228, 2006.
  • Vriesendorp T, Devries J, Holleman F, Dzoljic M, Hoekstra J. “The use of two continuous glucose sensors during and after surgery”. Diabetes Technology and Therapeutics- Journals, 7(2), 315-322, 2005.
  • Kovatchev B, Anderson S, Heinemann L, Clarke W. “Comparison of the numerical and clinical accuracy of four continuous glucose monitors”. Diabetes Care Journal, 31(6), 1160 -1164, 2008.
  • Koschinsky T, Heinemann L. “Sensors for Glucose monitoring: technical and clinical aspects”. Diabetes/Metabolism Research and Reviews, 17(2), 113-123, 2001.
  • Oliver NS, Toumazou C, Cass AEG, Johnston DG. “Glucose sensors: a review of current and emerging technology”. Diabetic Medicine-Journals, 26(3),197-210, 2009.
  • Lin Y, Lu F, Tu Y, Ren Z. "Glucose biosensors based on carbon nanotube nanoelectrode ensembles”. Nano Letters, 4(2), 191-195, 2004.
  • Lindgren A, Ruzgas T, Gorton L, Csoregi E, Ardila GB, Sakharov IU, Gazaryan IG. “Biosensors based on novel peroxidases with improved properties in direct and mediated electron transfer”. Biosensors and Bioelectronics, 15(9-10), 491-497, 2000.
  • Tınkılıc N, Cubuk O, Isildak I. “Glucose and urea biosensors based on all solid-state contact PVC-NH2 membrane electrodes”. Analytica Chimica Acta, 452(1), 24-29, 2002.
  • Pörksen JR, Isildak I, Andac M, Yolcu M, Kahlert H, Scholz F, Behnert J. “Application of a new pH-sensitive electrode as a detector in flow ınjection potentiometry”. Electroanalysis, 17(12), 1085-1090, 2005.
  • Rekha K, Gouda MD, Thakur MS, Karanth NG. “Ascorbate oxidase based amperometric biosensor for organophosphorous pesticide monitoring”. Biosensors and Bioelectronic, 15(9-10),499-502, 2000.
  • Updike SJ, Gilligan BJ, Shults MC, Rhodes RK. “A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration”. Diabetes Care, 23(2), 208-214, 2000.
  • Aussedat B, Thome-Duret V, Reach G, Lemmonier F, Klein JC, Hu L, Wilson GS. “A user-friendly method for calibrating a subcutaneous glucose sensor-based hypoglycemic alarm”. Biosensors and Bioelectronics, 12(11), 1061-1071, 1997.
  • Lenigk R, Lam E, Lai A, Wang H, Han Y, Carlier P, Renneberg R. “Enzyme biosensor for studying therapeutics of Alzheimer’s disease”. Biosensors and Bioelectronics, 15(9-10), 541-547, 2000.
  • Ramsay G, Wolpert SM. “Utility of wiring nitrate reductase by alkylpyrroleviologen-based redox polymers for electrochemical biosensor and bioreactor applications”. Analytical Chemistry, 71(2), 504-506, 1999.
  • Bozkurter Cil AT, Bicakci U, Isildak I, Ariturk, E. “pH and antioxidant measurements in rats with testicular torsion and their correlation with viability”. Journal of Pediatric Surgery, 51(10), 1716-1720, 2016.
  • Yolcu, M. Dere, N. “All-Solid-State Potentiometric Cu(II)-Selective Sensor Based on Ion Imprinted Methacrylamide Polymer”. Electroanalysis, 30(6), 1-9, 2018.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Derya Bal Altuntaş 0000-0001-6544-6271

Özlem Tavukçuoğlu This is me 0000-0001-9584-676X

Publication Date December 28, 2018
Published in Issue Year 2018 Volume: 24 Issue: 7

Cite

APA Bal Altuntaş, D., & Tavukçuoğlu, Ö. (2018). Micro-Sized glucose biosensor based on composite pH sensor. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(7), 1355-1359.
AMA Bal Altuntaş D, Tavukçuoğlu Ö. Micro-Sized glucose biosensor based on composite pH sensor. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. December 2018;24(7):1355-1359.
Chicago Bal Altuntaş, Derya, and Özlem Tavukçuoğlu. “Micro-Sized Glucose Biosensor Based on Composite PH Sensor”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24, no. 7 (December 2018): 1355-59.
EndNote Bal Altuntaş D, Tavukçuoğlu Ö (December 1, 2018) Micro-Sized glucose biosensor based on composite pH sensor. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24 7 1355–1359.
IEEE D. Bal Altuntaş and Ö. Tavukçuoğlu, “Micro-Sized glucose biosensor based on composite pH sensor”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 24, no. 7, pp. 1355–1359, 2018.
ISNAD Bal Altuntaş, Derya - Tavukçuoğlu, Özlem. “Micro-Sized Glucose Biosensor Based on Composite PH Sensor”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24/7 (December 2018), 1355-1359.
JAMA Bal Altuntaş D, Tavukçuoğlu Ö. Micro-Sized glucose biosensor based on composite pH sensor. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24:1355–1359.
MLA Bal Altuntaş, Derya and Özlem Tavukçuoğlu. “Micro-Sized Glucose Biosensor Based on Composite PH Sensor”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 24, no. 7, 2018, pp. 1355-9.
Vancouver Bal Altuntaş D, Tavukçuoğlu Ö. Micro-Sized glucose biosensor based on composite pH sensor. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24(7):1355-9.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif