Conference Paper
BibTex RIS Cite

Aktif süspansiyon sistemleri için bilinmeyen bozucu etkisi altında uyarlamalı kontrolcü tasarımı

Year 2018, Volume: 24 Issue: 8, 1403 - 1408, 29.12.2018

Abstract

Bu
çalışmada, aktif süspansiyon sistemleri için yoldan gelen bozucu etkinin
bilinmediği kabulü yapılarak, uyarlamalı kontrolcü tasarlanmıştır. Yol
düzgünsüzlüğünden kaynaklanan bozucu, frekans, genlik ve faz değerleri
bilinmeyen farklı sinüzoidal dalgaların toplamı olarak modellenmiş ve gözlemci tasarımı
yapılmıştır. Böylece bozucu parametrize edilmiş ve geri adımlama yöntemi kullanılarak
uyarlamalı kontrolcü tasarımı yapılmıştır. Kapalı çevrim sistemin kararlılığı kanıtlanmış
ve yol bozucusu etkisi altında taşıt gövde ivmesinin bastırıldığı gösterilmiştir.
Kontrolcünün performansı benzetim ile test edilmiştir.

References

  • Cao D, Song X, Ahmadian M. “Editors’ perspectives: road vehicle suspension design dynamics, and control”. Vehicle system dynamics, 49(1-2), 3-28, 2011.
  • Hrovat, D. “Survey of advanced suspension developments and related optimal control applications”. Automatica, 33(10), 1781-1817, 1997.
  • Aly A, Farhan A. "Vehicle suspension systems control: a review". International Journal of Control, Automation and Systems, 2(2), 46-54, 2013.
  • Koch G, Sebastian S, Boris L. "Reference model based adaptive control of a hybrid suspension system". IFAC Proceedings, 43(7), 312-317, 2010.
  • Taghirad H, Esmailzadeh E. "Automobile passenger comfort assured through LQG/LQR active suspension". Journal of vibration and control, 4(5), 603-618, 1998.
  • Guclu R. "Fuzzy logic control of seat vibrations of a non-linear full vehicle model". Nonlinear Dynamics, 40(1), 21-34, 2005.
  • Guclu RN Yagiz. "Comparison of different control strategies on a vehicle using sliding mode control". Iranian Journal of Science and Technology, 28(4), 413-422, 2004.
  • Karlsson N, Andrew T, Hrovat D. "A backstepping approach to control of active suspensions". Decision and Control, Proceedings of the 40th IEEE Conference on. Vol. 5. IEEE, 2001.
  • Lin J, Kanellakopoulos I. "Adaptive nonlinear control in active suspensions". Proceedings of the 1996 IFAC, San Francisco, USA, 113-118, 1996.
  • Huang Y. "Adaptive control of nonlinear uncertain active suspension systems with prescribed performance". ISA transactions, 54, 145-155, 2015.
  • Yagiz, N, Hacioglu Y. "Backstepping control of a vehicle with active suspensions". Control Engineering Practice 16(12), 1457-1467, 2008.
  • Zhao F, Ge S, Tu F, Qin, Y, Dong, M. “Adaptive neural network control for active suspension system with actuator saturation”. IET Control Theory & Applications, 10(14), 1696-1705, 2016.
  • Ren H, Zhao Y, Chen S, Liu G. “State observer based adaptive sliding mode control for semi-active suspension systems”. Journal of Vibroengineering, 17(3), 1607, 2015.
  • Pan H, Sun W, Jing X, Gao H, Yao J. “Adaptive tracking control for active suspension systems with non-ideal actuators”. Journal of Sound and Vibration, 399, 2-20, 2017.
  • Pan H, Sun W, Gao H, Hayat T, Alsaadi F. “Constrained robust adaptive control for vehicle active suspension systems”. International Journal of Vehicle Design, 68(1-3), 5-21, 2015.
  • Bhowmik A, Tiwari A, Ginoya D, Phadke S. B. “Adaptive fault tolerant control for active suspension”. In Control, Measurement and Instrumentation (CMI), 2016 IEEE First International Conference on, pp. 386-390, 2016.
  • International Organization for Standardization. “Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration-Part 1: General requirements”. The Organization, 1997.
  • Francis A, Wonham, W. “The internal model principle for linear multivariable regulators”. Applied mathematics and optimization, 2(2), 170-194 1975.
  • Serrani A, Isidori A, Marconi L. “Semi-global nonlinear output regulation with adaptive internal model”. IEEE Transactions on Automatic Control, 46(8), 1178-1194 2001.
  • Marino R, Tomei P. “Adaptive tracking and disturbance rejection for uncertain nonlinear systems”. IEEE Transactions on Automatic Control, 50(1), 90-95, 2005.
  • Ding Z. “Universal disturbance rejection for nonlinear systems in output feedback form”. IEEE Transactions on Automatic Control, 48(7), 1222-1226, 2005.
  • Nikiforov V. O. “Observers of external deterministic disturbances. I. objects with known parameters”. Automation and Remote Control, 65(10), 1531-1541 2004.
  • Chen T. Linear System Theory and Design. Oxford University Press, Inc, 1995
  • Krstic M, Ioannis K, Kokotovic P. Nonlinear and adaptive control design. Wiley 1995.
  • Du H, Li W, Zhang N. “Integrated seat and suspension control for a quarter car with driver model”. IEEE transactions on vehicular technology, 61(9), 3893-3908, 2012.
  • Sun W, Pan H, Zhang Y, Gao H. “Multi-objective control for uncertain nonlinear active suspension systems”. Mechatronics, 24(4), 318-327, 2014.
  • Van der Sande, TPJ. "Robust control of an electromagnetic active suspension system: Simulations and measurements." Mechatronics 23(2), 204-212, 2013.

Design of an adaptive controller under unknown disturbance input for active suspension systems

Year 2018, Volume: 24 Issue: 8, 1403 - 1408, 29.12.2018

Abstract

In
this paper, an adaptive backstepping controller is designed where the road
disturbance is assumed that it is not measured. Therefore, the disturbance is
modelled as a sum of sinusoidals where amplitude, phase and frequency are
considered as unknown. Then, the observer is parametrized. After the design of
the observer, an adaptive controller is designed with using backstepping
technique. It is proven that the closed loop system is stable and the
acceleration of the body is attenuated under the effect of the road
disturbance. To reveal the performance of the controller, a simulation is
illustrated with road test.

References

  • Cao D, Song X, Ahmadian M. “Editors’ perspectives: road vehicle suspension design dynamics, and control”. Vehicle system dynamics, 49(1-2), 3-28, 2011.
  • Hrovat, D. “Survey of advanced suspension developments and related optimal control applications”. Automatica, 33(10), 1781-1817, 1997.
  • Aly A, Farhan A. "Vehicle suspension systems control: a review". International Journal of Control, Automation and Systems, 2(2), 46-54, 2013.
  • Koch G, Sebastian S, Boris L. "Reference model based adaptive control of a hybrid suspension system". IFAC Proceedings, 43(7), 312-317, 2010.
  • Taghirad H, Esmailzadeh E. "Automobile passenger comfort assured through LQG/LQR active suspension". Journal of vibration and control, 4(5), 603-618, 1998.
  • Guclu R. "Fuzzy logic control of seat vibrations of a non-linear full vehicle model". Nonlinear Dynamics, 40(1), 21-34, 2005.
  • Guclu RN Yagiz. "Comparison of different control strategies on a vehicle using sliding mode control". Iranian Journal of Science and Technology, 28(4), 413-422, 2004.
  • Karlsson N, Andrew T, Hrovat D. "A backstepping approach to control of active suspensions". Decision and Control, Proceedings of the 40th IEEE Conference on. Vol. 5. IEEE, 2001.
  • Lin J, Kanellakopoulos I. "Adaptive nonlinear control in active suspensions". Proceedings of the 1996 IFAC, San Francisco, USA, 113-118, 1996.
  • Huang Y. "Adaptive control of nonlinear uncertain active suspension systems with prescribed performance". ISA transactions, 54, 145-155, 2015.
  • Yagiz, N, Hacioglu Y. "Backstepping control of a vehicle with active suspensions". Control Engineering Practice 16(12), 1457-1467, 2008.
  • Zhao F, Ge S, Tu F, Qin, Y, Dong, M. “Adaptive neural network control for active suspension system with actuator saturation”. IET Control Theory & Applications, 10(14), 1696-1705, 2016.
  • Ren H, Zhao Y, Chen S, Liu G. “State observer based adaptive sliding mode control for semi-active suspension systems”. Journal of Vibroengineering, 17(3), 1607, 2015.
  • Pan H, Sun W, Jing X, Gao H, Yao J. “Adaptive tracking control for active suspension systems with non-ideal actuators”. Journal of Sound and Vibration, 399, 2-20, 2017.
  • Pan H, Sun W, Gao H, Hayat T, Alsaadi F. “Constrained robust adaptive control for vehicle active suspension systems”. International Journal of Vehicle Design, 68(1-3), 5-21, 2015.
  • Bhowmik A, Tiwari A, Ginoya D, Phadke S. B. “Adaptive fault tolerant control for active suspension”. In Control, Measurement and Instrumentation (CMI), 2016 IEEE First International Conference on, pp. 386-390, 2016.
  • International Organization for Standardization. “Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration-Part 1: General requirements”. The Organization, 1997.
  • Francis A, Wonham, W. “The internal model principle for linear multivariable regulators”. Applied mathematics and optimization, 2(2), 170-194 1975.
  • Serrani A, Isidori A, Marconi L. “Semi-global nonlinear output regulation with adaptive internal model”. IEEE Transactions on Automatic Control, 46(8), 1178-1194 2001.
  • Marino R, Tomei P. “Adaptive tracking and disturbance rejection for uncertain nonlinear systems”. IEEE Transactions on Automatic Control, 50(1), 90-95, 2005.
  • Ding Z. “Universal disturbance rejection for nonlinear systems in output feedback form”. IEEE Transactions on Automatic Control, 48(7), 1222-1226, 2005.
  • Nikiforov V. O. “Observers of external deterministic disturbances. I. objects with known parameters”. Automation and Remote Control, 65(10), 1531-1541 2004.
  • Chen T. Linear System Theory and Design. Oxford University Press, Inc, 1995
  • Krstic M, Ioannis K, Kokotovic P. Nonlinear and adaptive control design. Wiley 1995.
  • Du H, Li W, Zhang N. “Integrated seat and suspension control for a quarter car with driver model”. IEEE transactions on vehicular technology, 61(9), 3893-3908, 2012.
  • Sun W, Pan H, Zhang Y, Gao H. “Multi-objective control for uncertain nonlinear active suspension systems”. Mechatronics, 24(4), 318-327, 2014.
  • Van der Sande, TPJ. "Robust control of an electromagnetic active suspension system: Simulations and measurements." Mechatronics 23(2), 204-212, 2013.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Gökhan Kararsız This is me 0000-0002-0710-1686

Halil Baştürk This is me 0000-0003-1730-7554

Publication Date December 29, 2018
Published in Issue Year 2018 Volume: 24 Issue: 8

Cite

APA Kararsız, G., & Baştürk, H. (2018). Aktif süspansiyon sistemleri için bilinmeyen bozucu etkisi altında uyarlamalı kontrolcü tasarımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(8), 1403-1408.
AMA Kararsız G, Baştürk H. Aktif süspansiyon sistemleri için bilinmeyen bozucu etkisi altında uyarlamalı kontrolcü tasarımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. December 2018;24(8):1403-1408.
Chicago Kararsız, Gökhan, and Halil Baştürk. “Aktif süspansiyon Sistemleri için Bilinmeyen Bozucu Etkisi altında Uyarlamalı Kontrolcü tasarımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24, no. 8 (December 2018): 1403-8.
EndNote Kararsız G, Baştürk H (December 1, 2018) Aktif süspansiyon sistemleri için bilinmeyen bozucu etkisi altında uyarlamalı kontrolcü tasarımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24 8 1403–1408.
IEEE G. Kararsız and H. Baştürk, “Aktif süspansiyon sistemleri için bilinmeyen bozucu etkisi altında uyarlamalı kontrolcü tasarımı”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 24, no. 8, pp. 1403–1408, 2018.
ISNAD Kararsız, Gökhan - Baştürk, Halil. “Aktif süspansiyon Sistemleri için Bilinmeyen Bozucu Etkisi altında Uyarlamalı Kontrolcü tasarımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24/8 (December 2018), 1403-1408.
JAMA Kararsız G, Baştürk H. Aktif süspansiyon sistemleri için bilinmeyen bozucu etkisi altında uyarlamalı kontrolcü tasarımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24:1403–1408.
MLA Kararsız, Gökhan and Halil Baştürk. “Aktif süspansiyon Sistemleri için Bilinmeyen Bozucu Etkisi altında Uyarlamalı Kontrolcü tasarımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 24, no. 8, 2018, pp. 1403-8.
Vancouver Kararsız G, Baştürk H. Aktif süspansiyon sistemleri için bilinmeyen bozucu etkisi altında uyarlamalı kontrolcü tasarımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24(8):1403-8.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif