Research Article
BibTex RIS Cite

İçten yanmalı motorların egzoz sistemleri için sıvı soğutmalı bir termoelektrik jeneratör sistemi tasarımı ve soğutucu akışkan miktarının geri kazanım performansına etkisinin deneysel incelemesi

Year 2019, Volume: 25 Issue: 1, 7 - 12, 26.02.2019

Abstract

Termoelektrik
jeneratörler (TEJ) içten yanmalı motorların egzoz sistemlerinde atık enerjinin
geri kazanımı için önemli bir alternatiftir. Bu çalışmada içten yanmalı
motorların egzoz sistemlerinde atık ısının geri kazanımı için kullanılacak sıvı
soğutmalı bir termoelektrik jeneratör sistemi tasarlanmış ve soğutucu akışkan
miktarının geri kazanım sistemine etkisi deneysel olarak incelenmiştir.
Soğutucu akışkan miktarının artması modül yüzeyleri arası sıcaklık farkını
arttırmıştır. 4 adet TEJ modül kullanan geri kazanım sisteminde TH=350 °C’ de 0.75, 1, 1.25 l/dk. akış miktarlarında sırasıyla 9.38,
10.05, 10.63 V yüksüz gerilim ve 1.7, 1.97, 2.16 W güç elde edilmiştir.

References

  • Ramesh KC, Sonthalia A, Goel R. “Experimental study on waste heat recovery from an internal combustion engine using thermoelectric technology”. Center of Excellence for Automotive Research, VIT University, 15(4), 1011-1022, 2011.
  • Haidar JG, Ghojel JI, “Waste heat recovery from the exhaust of low-power Diesel engine using fabrication and evaluation of SiGe/electrode”. 16rd International Conference on Thermoelectrics, Dersden, Germany,14-28 May 1998.
  • Kunt MA, “İçten yanmalı motor atık ısılarının geri kazanımında termoelektrik jeneratörlerin kullanımı”. El-Cezerî Fen ve Mühendislik Dergisi, 3(2), 192-203, 2016.
  • Vazquez J, Miguel A. Palacios R, Arenas A, “State of the art of thermoelectric generators based on heat recovered from the exhaust gases of automobiles”. 7rd European Workshop on Thermoelectrics, Pamplona, Spain, 3-4 October 2008.
  • Green Car Congress. “Thermoelectric System for Waste Heat Recovery in Cars”. http://www.greencarcongress.com/2010/04/teg-20100406.html (04.04.2018).
  • Stabler F. “Automotive applications of high efficiency thermoelectrics”. Proceedings of DARPA / ONR / DOE High Efficiency Thermoelectric Workshop, San Diego, CA, USA, 24-27 March 2002.
  • Fairbanks J. “DOE’s Launch of High-Efficiency Thermoelectrics Projects”. 10rd Diesel Engine Emissions Reduction Conference, San Diego, California, 29 August-2 September 2004.
  • Kadota M, Yamamoto K. “Advanced transient simulation on hybrid vehicle using Rankine cycle system”. SAE International Journal of Engines, 1(1), 240-247, 2009.
  • Bell L. “Recovering waste heat with thermoelectric systems”. Cooling-Heating- Generating Power Science, 321(5895), 1457-1461, 2008.
  • Bass JC, Elsner NB, Leavitt FA. “Performance of the 1 kW thermoelectric generator for diesel engines”. 13rd International Conference on Thermoelectrics, Kansas City, Kansas, USA, 30 August-1 September 1994.
  • Vieira JAB, Mota AM. “Thermoelectric generator using water gas heater energy for battery charging”. IEEE International Conference on Control Applications, Saint Petersburg, Russia, 8–10 July 2009.
  • Thacher EF, Helenbrook BT, Kari MA, Richter CJ. “Testing of an automobile exhaust thermoelectric generator in a light truck”. Proc. IMechE Part D, 221(1), 95-107, 2006.
  • Eakburanawat J, Boonyaroonate I. “Development of a thermoelectric battery-charger with microcontroller-based maximum power point tracking technique”. Applied Energy, 83(7), 687-704, 2006.
  • Kaya AY. Egzoz Gazındaki Isı İle Çalıştırılan Termoelektrik Sistemin Deneysel İncelemesi. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Isparta, Türkiye, 2010.
  • Temizer İ, İlkılıç C. “İçten yanmalı dizel motorunun atık egzoz gazı enerjisi kullanılarak elektrik enerjisi üretimi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(4), 330-336, 2017.
  • Chen M, Rosendahl LA, Condra TJ, Pedersen JK. “Numerical modelling of thermoelectric generators with varying material properties in a circuit simulator”. IEEE Transactions on Energy Conversion; 24(1), 112-124, 2009.
  • Ahıska R, Dislitas S, Ömer G. “A new method and computer-controlled system for measuring the time constant of real thermoelectric modules”. Energy Conversion Management, 53(1), 314-321,2012.
  • Rajput RK. Heat and Mass Transfer. 3rd. Pub. Tata McGraw-Hill, 2009.
  • Marlow Industry. “Technical Data Sheet for TG12-8”. https://cdn2.hubspot.net/hubfs/547732/Data_Sheets/TG12-8.pdf (04.04.2018).
  • Esarte J, Min G, Rowe DM. “Modelling heat exchangers for thermoelectric generators”. Journal Power Sources, 93, 72-76, 2001.

A design of a liquid cooling thermoelectric generator system for the exhaust systems of internal combustion engines and experimental study on the effect of refrigerant fluid quantity on recovery performance

Year 2019, Volume: 25 Issue: 1, 7 - 12, 26.02.2019

Abstract

Thermoelectric
generators (TEG) are an important alternative to the recovery of waste heat in
the exhaust system of an internal combustion engine. In this study, a
liquid-cooled thermoelectric generator system for waste heat recovery in
exhaust systems of internal combustion engines was designed and the effect of
the amount of refrigerant on the recovery system was experimentally
investigated. The increase in the amount of refrigerant increases the
temperature difference between the module surfaces In the recovery system using
four TEG modules, at TH=350 °C and flow rates of 0.75, 1, 1.25 l/min
flow rate 9.38, 10.05, 10.63 V unloaded voltage and 1.7, 1.97, 2.16 W power
were obtained respectively.

References

  • Ramesh KC, Sonthalia A, Goel R. “Experimental study on waste heat recovery from an internal combustion engine using thermoelectric technology”. Center of Excellence for Automotive Research, VIT University, 15(4), 1011-1022, 2011.
  • Haidar JG, Ghojel JI, “Waste heat recovery from the exhaust of low-power Diesel engine using fabrication and evaluation of SiGe/electrode”. 16rd International Conference on Thermoelectrics, Dersden, Germany,14-28 May 1998.
  • Kunt MA, “İçten yanmalı motor atık ısılarının geri kazanımında termoelektrik jeneratörlerin kullanımı”. El-Cezerî Fen ve Mühendislik Dergisi, 3(2), 192-203, 2016.
  • Vazquez J, Miguel A. Palacios R, Arenas A, “State of the art of thermoelectric generators based on heat recovered from the exhaust gases of automobiles”. 7rd European Workshop on Thermoelectrics, Pamplona, Spain, 3-4 October 2008.
  • Green Car Congress. “Thermoelectric System for Waste Heat Recovery in Cars”. http://www.greencarcongress.com/2010/04/teg-20100406.html (04.04.2018).
  • Stabler F. “Automotive applications of high efficiency thermoelectrics”. Proceedings of DARPA / ONR / DOE High Efficiency Thermoelectric Workshop, San Diego, CA, USA, 24-27 March 2002.
  • Fairbanks J. “DOE’s Launch of High-Efficiency Thermoelectrics Projects”. 10rd Diesel Engine Emissions Reduction Conference, San Diego, California, 29 August-2 September 2004.
  • Kadota M, Yamamoto K. “Advanced transient simulation on hybrid vehicle using Rankine cycle system”. SAE International Journal of Engines, 1(1), 240-247, 2009.
  • Bell L. “Recovering waste heat with thermoelectric systems”. Cooling-Heating- Generating Power Science, 321(5895), 1457-1461, 2008.
  • Bass JC, Elsner NB, Leavitt FA. “Performance of the 1 kW thermoelectric generator for diesel engines”. 13rd International Conference on Thermoelectrics, Kansas City, Kansas, USA, 30 August-1 September 1994.
  • Vieira JAB, Mota AM. “Thermoelectric generator using water gas heater energy for battery charging”. IEEE International Conference on Control Applications, Saint Petersburg, Russia, 8–10 July 2009.
  • Thacher EF, Helenbrook BT, Kari MA, Richter CJ. “Testing of an automobile exhaust thermoelectric generator in a light truck”. Proc. IMechE Part D, 221(1), 95-107, 2006.
  • Eakburanawat J, Boonyaroonate I. “Development of a thermoelectric battery-charger with microcontroller-based maximum power point tracking technique”. Applied Energy, 83(7), 687-704, 2006.
  • Kaya AY. Egzoz Gazındaki Isı İle Çalıştırılan Termoelektrik Sistemin Deneysel İncelemesi. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Isparta, Türkiye, 2010.
  • Temizer İ, İlkılıç C. “İçten yanmalı dizel motorunun atık egzoz gazı enerjisi kullanılarak elektrik enerjisi üretimi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(4), 330-336, 2017.
  • Chen M, Rosendahl LA, Condra TJ, Pedersen JK. “Numerical modelling of thermoelectric generators with varying material properties in a circuit simulator”. IEEE Transactions on Energy Conversion; 24(1), 112-124, 2009.
  • Ahıska R, Dislitas S, Ömer G. “A new method and computer-controlled system for measuring the time constant of real thermoelectric modules”. Energy Conversion Management, 53(1), 314-321,2012.
  • Rajput RK. Heat and Mass Transfer. 3rd. Pub. Tata McGraw-Hill, 2009.
  • Marlow Industry. “Technical Data Sheet for TG12-8”. https://cdn2.hubspot.net/hubfs/547732/Data_Sheets/TG12-8.pdf (04.04.2018).
  • Esarte J, Min G, Rowe DM. “Modelling heat exchangers for thermoelectric generators”. Journal Power Sources, 93, 72-76, 2001.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Mehmet Akif Kunt 0000-0001-5710-7253

Publication Date February 26, 2019
Published in Issue Year 2019 Volume: 25 Issue: 1

Cite

APA Kunt, M. A. (2019). İçten yanmalı motorların egzoz sistemleri için sıvı soğutmalı bir termoelektrik jeneratör sistemi tasarımı ve soğutucu akışkan miktarının geri kazanım performansına etkisinin deneysel incelemesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(1), 7-12.
AMA Kunt MA. İçten yanmalı motorların egzoz sistemleri için sıvı soğutmalı bir termoelektrik jeneratör sistemi tasarımı ve soğutucu akışkan miktarının geri kazanım performansına etkisinin deneysel incelemesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. February 2019;25(1):7-12.
Chicago Kunt, Mehmet Akif. “İçten Yanmalı motorların Egzoz Sistemleri için sıvı soğutmalı Bir Termoelektrik jeneratör Sistemi tasarımı Ve soğutucu akışkan miktarının Geri kazanım performansına Etkisinin Deneysel Incelemesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25, no. 1 (February 2019): 7-12.
EndNote Kunt MA (February 1, 2019) İçten yanmalı motorların egzoz sistemleri için sıvı soğutmalı bir termoelektrik jeneratör sistemi tasarımı ve soğutucu akışkan miktarının geri kazanım performansına etkisinin deneysel incelemesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25 1 7–12.
IEEE M. A. Kunt, “İçten yanmalı motorların egzoz sistemleri için sıvı soğutmalı bir termoelektrik jeneratör sistemi tasarımı ve soğutucu akışkan miktarının geri kazanım performansına etkisinin deneysel incelemesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 25, no. 1, pp. 7–12, 2019.
ISNAD Kunt, Mehmet Akif. “İçten Yanmalı motorların Egzoz Sistemleri için sıvı soğutmalı Bir Termoelektrik jeneratör Sistemi tasarımı Ve soğutucu akışkan miktarının Geri kazanım performansına Etkisinin Deneysel Incelemesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25/1 (February 2019), 7-12.
JAMA Kunt MA. İçten yanmalı motorların egzoz sistemleri için sıvı soğutmalı bir termoelektrik jeneratör sistemi tasarımı ve soğutucu akışkan miktarının geri kazanım performansına etkisinin deneysel incelemesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25:7–12.
MLA Kunt, Mehmet Akif. “İçten Yanmalı motorların Egzoz Sistemleri için sıvı soğutmalı Bir Termoelektrik jeneratör Sistemi tasarımı Ve soğutucu akışkan miktarının Geri kazanım performansına Etkisinin Deneysel Incelemesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 25, no. 1, 2019, pp. 7-12.
Vancouver Kunt MA. İçten yanmalı motorların egzoz sistemleri için sıvı soğutmalı bir termoelektrik jeneratör sistemi tasarımı ve soğutucu akışkan miktarının geri kazanım performansına etkisinin deneysel incelemesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25(1):7-12.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.