Research Article
BibTex RIS Cite

Development and implementation of a methodology for reverse engineering design of Francis turbine runners

Year 2019, Volume: 25 Issue: 4, 430 - 439, 28.08.2019

Abstract

Francis
type hydraulic turbine runners have complex blade shapes. Runner blades have
three dimensional profiles that direct the incoming flow. In this study, a
reverse engineering methodology is developed for the redesign of turbines.
Traditional reverse engineering steps are combined with the basics and flow
dynamics of hydraulic turbines and applied to two different turbine runners
(which have different specific speeds) of two different hydroelectric power
plants in operation. The methodology is first verified by application on the
first runner and utilized for the redesign of the runner of another power
plant. The reasons for the reduced performance of the second runner are
examined with the help of the new inverse engineering design methodology and a
rehabilitation study is performed. Thus, the runner which only provides 70% of
its installed capacity, is redesigned and can now utilize its full capacity.

References

  • Drtina P, Sallaberger M. “Hydraulic turbines-basic principles and state-of-the art computational fluid dynamics applications”. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 213(1), 85-102, 1999.
  • Krivchenko GI. Hydraulic Machines: Turbines and Pumps.,1st ed. Moscow, Russia, Mir Publishers, 1986.
  • Alexander KV, Giddens EP, Fuller AM. “Axial-flow turbines for low head microhydro systems”. Renewable Energy, 34(1), 35-47, 2009.
  • Varady T, Martin R R, Coxt J. “Reverse engineering of geometric models-an introduction”. Computer Aided Design, 29(4), 255-268, 1997.
  • Raja V, Fernandes KJ. Reverse Engineering: An Industrial Perspective. 1st ed., London, UK, Springer, 2007.
  • Motavalli S. “Review of reverse engineering approaches”. Computers & Industrial Engineering, 35(1-2), 25-28, 1998.
  • Peng Q, Loftus M. A. “New approach to reverse engineering based on vision information”. International Journal of Machine Tools & Manufacture, 38(8), 881-899, 1998.
  • Lee KH, Park HP. “Automated inspection planning of free-form shape parts by laser scanning”. Robotics and Computer Integrated Manufacturing, 16(4), 201-210, 2000.
  • Farin, G. Curves and Surfaces for Computer-Aided Geometric Design, a Practical Guide. 4th ed., San Diego, CA, USA, Academic Press, 1997.
  • Lin YP. Wang CT. Dai KR. “Reverse engineering in CAD model reconstruction of customized artificial joint”. Medical & Physics. 27(2), 189-193, 2005.
  • Garcia R, Boulanger P, Barbosa PJ, Betancur MJ, Quintero AB, Castaneda LF, Betancur GGR. “Application of the reverse engineer in the modelling of a francis turbine in a hydroelectric minipower station”. 23rd ISPE International Conference on CAD/CAM Robotics and Factories of the Future, Bogota, Colombia, 16-18 August 2007.
  • ANSYS. Bladegen User Manuel, v 15.0, Pennsylvania, USA, 2015.
  • Dassault Systemes. SolidWorks User Manual. 2014 ed., Massachusets, USA, 2014.
  • Arfken G. Conformal Mapping in Mathematical Methods for Physicists. 3rd ed., Orlando, FL, Academic Press, 1985.
  • Ayli E, Kaplan A, Cetinturk H, Kavurmaci B, Demirel G, Celebioglu K, Aradag S. “CFD analysis of 3D flow for 1.4 MW francis turbine and model turbine manufacturing”. ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston MA, USA, 2-5 August 2015.
  • ANSYS. CFX User Manuel, v 15.0, Pennsylvania, USA 2015.

Francis tipi su türbini çarkının tersine mühendislik ile tasarımı için bir yöntem geliştirilmesi ve uygulaması

Year 2019, Volume: 25 Issue: 4, 430 - 439, 28.08.2019

Abstract

Francis tipi su
türbinlerine ait çark kanatlarının yapısı oldukça karmaşıktır. Üç boyutlu
profilleri ile gelen akışı yönlendirirler. Bu çalışmada, türbinlerin yeniden
tasarımı için bir tersine mühendislik yöntemi geliştirilmiştir. Geleneksel
tersine mühendislik yöntemi, hidrolik türbin temel çalışma prensipleri ve
akışkanlar mekaniği temelleri ile birleştirilerek iki farklı kullanımda olan
santralin türbin çarkına (iki farklı özgül hızı olan) uygulanmıştır. Yöntem,
öncelikle bir santrale uygulanarak doğrulanmış, ardından diğer santralin türbin
çarkının yeniden tasarımında kullanılmıştır. İkinci santralin türbin çarkının
çalışmasındaki sorunların sebepleri yeni geliştirilen yöntem ile araştırılmış
ve çarkın rehabilitasyonu gerçekleştirilmiştir. Kapasitesinin %70’i verimle
çalışan çark, tam kapasite çalışır hale gelmiştir.

References

  • Drtina P, Sallaberger M. “Hydraulic turbines-basic principles and state-of-the art computational fluid dynamics applications”. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 213(1), 85-102, 1999.
  • Krivchenko GI. Hydraulic Machines: Turbines and Pumps.,1st ed. Moscow, Russia, Mir Publishers, 1986.
  • Alexander KV, Giddens EP, Fuller AM. “Axial-flow turbines for low head microhydro systems”. Renewable Energy, 34(1), 35-47, 2009.
  • Varady T, Martin R R, Coxt J. “Reverse engineering of geometric models-an introduction”. Computer Aided Design, 29(4), 255-268, 1997.
  • Raja V, Fernandes KJ. Reverse Engineering: An Industrial Perspective. 1st ed., London, UK, Springer, 2007.
  • Motavalli S. “Review of reverse engineering approaches”. Computers & Industrial Engineering, 35(1-2), 25-28, 1998.
  • Peng Q, Loftus M. A. “New approach to reverse engineering based on vision information”. International Journal of Machine Tools & Manufacture, 38(8), 881-899, 1998.
  • Lee KH, Park HP. “Automated inspection planning of free-form shape parts by laser scanning”. Robotics and Computer Integrated Manufacturing, 16(4), 201-210, 2000.
  • Farin, G. Curves and Surfaces for Computer-Aided Geometric Design, a Practical Guide. 4th ed., San Diego, CA, USA, Academic Press, 1997.
  • Lin YP. Wang CT. Dai KR. “Reverse engineering in CAD model reconstruction of customized artificial joint”. Medical & Physics. 27(2), 189-193, 2005.
  • Garcia R, Boulanger P, Barbosa PJ, Betancur MJ, Quintero AB, Castaneda LF, Betancur GGR. “Application of the reverse engineer in the modelling of a francis turbine in a hydroelectric minipower station”. 23rd ISPE International Conference on CAD/CAM Robotics and Factories of the Future, Bogota, Colombia, 16-18 August 2007.
  • ANSYS. Bladegen User Manuel, v 15.0, Pennsylvania, USA, 2015.
  • Dassault Systemes. SolidWorks User Manual. 2014 ed., Massachusets, USA, 2014.
  • Arfken G. Conformal Mapping in Mathematical Methods for Physicists. 3rd ed., Orlando, FL, Academic Press, 1985.
  • Ayli E, Kaplan A, Cetinturk H, Kavurmaci B, Demirel G, Celebioglu K, Aradag S. “CFD analysis of 3D flow for 1.4 MW francis turbine and model turbine manufacturing”. ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston MA, USA, 2-5 August 2015.
  • ANSYS. CFX User Manuel, v 15.0, Pennsylvania, USA 2015.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Kutay Çelebioğlu

Alper Kaplan This is me

Publication Date August 28, 2019
Published in Issue Year 2019 Volume: 25 Issue: 4

Cite

APA Çelebioğlu, K., & Kaplan, A. (2019). Development and implementation of a methodology for reverse engineering design of Francis turbine runners. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(4), 430-439.
AMA Çelebioğlu K, Kaplan A. Development and implementation of a methodology for reverse engineering design of Francis turbine runners. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. August 2019;25(4):430-439.
Chicago Çelebioğlu, Kutay, and Alper Kaplan. “Development and Implementation of a Methodology for Reverse Engineering Design of Francis Turbine Runners”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25, no. 4 (August 2019): 430-39.
EndNote Çelebioğlu K, Kaplan A (August 1, 2019) Development and implementation of a methodology for reverse engineering design of Francis turbine runners. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25 4 430–439.
IEEE K. Çelebioğlu and A. Kaplan, “Development and implementation of a methodology for reverse engineering design of Francis turbine runners”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 25, no. 4, pp. 430–439, 2019.
ISNAD Çelebioğlu, Kutay - Kaplan, Alper. “Development and Implementation of a Methodology for Reverse Engineering Design of Francis Turbine Runners”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25/4 (August 2019), 430-439.
JAMA Çelebioğlu K, Kaplan A. Development and implementation of a methodology for reverse engineering design of Francis turbine runners. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25:430–439.
MLA Çelebioğlu, Kutay and Alper Kaplan. “Development and Implementation of a Methodology for Reverse Engineering Design of Francis Turbine Runners”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 25, no. 4, 2019, pp. 430-9.
Vancouver Çelebioğlu K, Kaplan A. Development and implementation of a methodology for reverse engineering design of Francis turbine runners. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25(4):430-9.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif