Review
BibTex RIS Cite

State of the art review of the application of strain energy density in design against fatigue of welded joints

Year 2019, Volume: 25 Issue: 4, 462 - 467, 28.08.2019

Abstract

Design
of mechanical components against fatigue is vitally important to prevent sudden
and unexpected fatigue damage. Due to the complex nature of welded joints
because of the changes in material properties due to heat and the geometry of weld
beads, designing against fatigue becomes an even more challenging task. Over
the years, several methods that can accurately and effectively determine
fatigue related parameters were developed. In this paper, a state of the art
literature review of studies based on strain energy density (SED) approaches
and their use in fatigue evaluations are presented. While a theoretical
background is provided, the main focus of the paper is to highlight
applications of SED approaches. In order to achieve this objective, papers with
varied topics that related to SED are evaluated.

References

  • Lazzarin P, Zambardi R. "A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches". International journal of fracture, 112(3), 275-298, 2001.
  • Lazzarin P, Zambardi R. “The equivalent strain energy density approach re-formulated and applied to sharp V-shaped notches under localized and generalized plasticity”. Fatigue & Fracture of Engineering Materials & Structures, 25(10), 917-928, 2002.
  • Neuber H. Theory of Notch Stresses. Berlin, Germany, Splinger-Verlag, 1958.
  • Lazzarin P, Sonsino CM, Zambardi R. “A notch stress intensity approach to assess the multiaxial fatigue strength of welded tube‐to‐flange joints subjected to combined loadings”. Fatigue & Fracture of Engineering Materials & Structures, 27(2), 127-140, 2004.
  • Lazzarin P, Berto F, Zappalorto M. “Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: Theoretical bases and applications”. International Journal of Fatigue, 32(10), 1559-1567, 2010.
  • Lazzarin P, Berto F, Gomez FJ, Zappalorto M. “Some advantages derived from the use of the strain energy density over a control volume in fatigue strength assessments of welded joints”. International Journal of Fatigue, 30(8), 1345-1357, 2008.
  • Payten WM, Dean DW, Snowden KU. “A strain energy density method for the prediction of creep-fatigue damage in high temperature components”. Materials Science and Engineering: A, 527(7-8), 1920-1925, 2010.
  • Park SH, Hong SG, Lee BH, Bang W, Lee CS. “Low-cycle fatigue characteristics of rolled Mg-3Al-1Zn alloy”. International Journal of Fatigue, 32(11), 1835-1842, 2010.
  • Hong SG, Park SH, Huh YH, Lee CS. “Anisotropic fatigue behavior of rolled Mg-3Al-1Zn alloy”. Journal of Materials Research, 25(5), 966-971, 2010.
  • Scott-Emuakpor O, George T, Cross C, Shen MHH. “Multi-axial fatigue-life prediction via a strain-energy method”. AIAA Journal, 48(1), 63-72, 2010.
  • Scott-Emuakpor O, George T, Cross C, Shen MH. “Hysteresis-loop representation for strain energy calculation and fatigue assessment”. The Journal of Strain Analysis for Engineering Design, 45(4), 275-282, 2010.
  • Ozaltun H, Shen MH, George T, Cross C. “An energy based fatigue life prediction framework for in-service structural components”. Experimental Mechanics, 51(5), 707-718, 2011.
  • Kim YW, Kim G, Hong SG, Lee CS. “Energy-based approach to predict the fatigue life behavior of pre-strained Fe-18Mn TWIP steel”. Materials Science and Engineering: A, 528(13-14), 4696-4702, 2011.
  • Maksimovic S, Posavljak S, Maksimovic K, Nikolic V, Djurkovic V. “Total fatigue life estimation of notched structural components using low‐cycle fatigue properties”. Strain, 47(2), 341-349, 2011.
  • Mehran S, Rouhi S, Ramzani B, Barati E. “Fracture analysis of functionally graded materials with U‐and V‐notches under mode I loading using the averaged strain‐energy density criterion”. Fatigue & Fracture of Engineering Materials & Structures, 35(7), 614-627, 2012.
  • Zhu SP, Huang HZ, Ontiveros V, He LP, Modarres M. “Probabilistic low cycle fatigue life prediction using an energy-based damage parameter and accounting for model uncertainty”. International Journal of Damage Mechanics, 21(8), 1128-1153, 2012.
  • Zhu SP, Huang HZ, He LP, Liu Y, Wang Z. “A generalized energy-based fatigue-creep damage parameter for life prediction of turbine disk alloys”. Engineering Fracture Mechanics, 90, 89-100, 2012.
  • Walat K, Kurek M, Ogonowski P, Łagoda T. “The multiaxial random fatigue criteria based on strain and energy damage parameters on the critical plane for the low-cycle range”. International Journal of Fatigue, 37, 100-111, 2012.
  • Shariati M, Hatami H, Yarahmadi H, Eipakchi, HR. “An experimental study on the ratcheting and fatigue behavior of polyacetal under uniaxial cyclic loading”. Materials & Design, 34, 302-312, 2012.
  • Lazzarin P, Berto F, Ayatollahi MR. “Brittle failure of inclined key‐hole notches in isostatic graphite under in‐plane mixed mode loading”. Fatigue & Fracture of Engineering Materials & Structures, 36(9), 942-955, 2013.
  • Boulenouar A, Benseddiq N, Mazari M. “Strain energy density prediction of crack propagation for 2D linear elastic materials”. Theoretical and Applied Fracture Mechanics, 67, 29-37, 2013.
  • Lazzarin P, Campagnolo A, Berto F. “A comparison among some recent energy-and stress-based criteria for the fracture assessment of sharp V-notched components under Mode I loading”. Theoretical and Applied Fracture Mechanics, 71, 21-30, 2014.
  • Lazzarin P, Zappalorto M, Berto F. “Averaged strain energy density and J-integral for U-and blunt V-shaped notches under torsion”. International Journal of Fracture, 188(2), 173-186, 2014.
  • Ferro P. “The local strain energy density approach applied to pre‐stressed components subjected to cyclic load”. Fatigue & Fracture of Engineering Materials & Structures, 37(11), 1268-1280, 2014.
  • Berto F, Gallo P, Lazzarin P. “High temperature fatigue tests of a Cu-Be alloy and synthesis in terms of linear elastic strain energy density”. Key Engineering Materials, 627, 77-80, 2015.
  • Torabi AR, Campagnolo A, Berto F. “Local strain energy density to predict mode II brittle fracture in Brazilian disk specimens weakened by V-notches with end holes”. Materials & Design, 69, 22-29, 2015.
  • Gallo P, Berto F. “Advanced materials for applications at high temperature: fatigue assessment by means of local strain energy density”. Advanced Engineering Materials, 18(12), 2010-2017, 2016.
  • Wang RZ, Zhang XC, Tu ST, Zhu SP, Zhang CC. “A modified strain energy density exhaustion model for creep-fatigue life prediction”. International Journal of Fatigue, 90, 12-22, 2016.
  • Chandran KR, Cao F, Newman JC. “Fatigue crack growth in miniature specimens: The equivalence of ∆K-correlation and that based on the change in net-section strain energy density”. Scripta Materialia, 122, 18-21, 2016.
  • Zhu SP, Lei Q, Huang HZ, Yang YJ, Peng W. “Mean stress effect correction in strain energy-based fatigue life prediction of metals”. International Journal of Damage Mechanics, 26(8), 1219-1241, 2017.
  • Razavi SMJ, Aliha MRM, Berto F. “Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens”. Theoretical and Applied Fracture Mechanics, 97, 419-425, 2018.
  • Radaj D, Sonsino CM, Fricke W. Fatigue Assessment of Welded Joints by Local Approaches. Cambridge, England, Woodhead Publishing, 2006.
  • Karakas Ö. “Consideration of mean-stress effects on fatigue life of welded magnesium joints by the application of the Smith-Watson-Topper and reference radius concepts”. International Journal of Fatigue, 49, 1-17, 2013.
  • Karakaş Ö. “Application of neuber’s effective stress method for the evaluation of the fatigue behaviour of magnesium welds”. International Journal of Fatigue, 101, 115-126, 2017.
  • Karakaş Ö, Zhang G, Sonsino CM. “Critical distance approach for the fatigue strength assessment of magnesium welded joints in contrast to Neuber's effective stress method”. International Journal of Fatigue, 112, 21-35, 2018.

Kaynaklı birleştirmelerin yorulmaya karşı tasarımında birim şekil değiştirme enerji yoğunluğu uygulamalarının güncel incelemesi

Year 2019, Volume: 25 Issue: 4, 462 - 467, 28.08.2019

Abstract

Mekanik bileşenlerin
yorulmaya karşı tasarımları ani ve beklenmedik yorulma hasarlarını önlemek için
hayati önem taşır. Kaynaklı bağlantıların ısı sebebiyle değişen malzeme
özellikleri ve kaynak dikişlerinin geometrisinden kaynaklanan karmaşık doğası
sebebiyle, yorulmaya karşı tasarlanmaları çok daha zorlu bir görev haline
gelmiştir. Yıllar içinde yorulma ile ilgili parametreleri hassas ve efektif
şekilde belirleyebilecek yöntemler geliştirilmiştir. Bu makalede, birim şekil
değiştirme enerji yoğunluğu yaklaşımlarına ve onların yorulma incelemelerinde
kullanımlarına dayanan çalışmaların güncel bir literatür incelemesi
sunulmuştur. Teorik bir temelin verilmesi ile birlikte, bu makalenin ana odağı
birim şekil değiştirme enerji yoğunluğu yaklaşımlarının uygulamalarını
vurgulamaktır. Bu amacı yerine getirmek için, birim şekil değiştirme enerji
yoğunluğu ile ilgili çeşitli konulara sahip makaleler incelenmiştir.

References

  • Lazzarin P, Zambardi R. "A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches". International journal of fracture, 112(3), 275-298, 2001.
  • Lazzarin P, Zambardi R. “The equivalent strain energy density approach re-formulated and applied to sharp V-shaped notches under localized and generalized plasticity”. Fatigue & Fracture of Engineering Materials & Structures, 25(10), 917-928, 2002.
  • Neuber H. Theory of Notch Stresses. Berlin, Germany, Splinger-Verlag, 1958.
  • Lazzarin P, Sonsino CM, Zambardi R. “A notch stress intensity approach to assess the multiaxial fatigue strength of welded tube‐to‐flange joints subjected to combined loadings”. Fatigue & Fracture of Engineering Materials & Structures, 27(2), 127-140, 2004.
  • Lazzarin P, Berto F, Zappalorto M. “Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: Theoretical bases and applications”. International Journal of Fatigue, 32(10), 1559-1567, 2010.
  • Lazzarin P, Berto F, Gomez FJ, Zappalorto M. “Some advantages derived from the use of the strain energy density over a control volume in fatigue strength assessments of welded joints”. International Journal of Fatigue, 30(8), 1345-1357, 2008.
  • Payten WM, Dean DW, Snowden KU. “A strain energy density method for the prediction of creep-fatigue damage in high temperature components”. Materials Science and Engineering: A, 527(7-8), 1920-1925, 2010.
  • Park SH, Hong SG, Lee BH, Bang W, Lee CS. “Low-cycle fatigue characteristics of rolled Mg-3Al-1Zn alloy”. International Journal of Fatigue, 32(11), 1835-1842, 2010.
  • Hong SG, Park SH, Huh YH, Lee CS. “Anisotropic fatigue behavior of rolled Mg-3Al-1Zn alloy”. Journal of Materials Research, 25(5), 966-971, 2010.
  • Scott-Emuakpor O, George T, Cross C, Shen MHH. “Multi-axial fatigue-life prediction via a strain-energy method”. AIAA Journal, 48(1), 63-72, 2010.
  • Scott-Emuakpor O, George T, Cross C, Shen MH. “Hysteresis-loop representation for strain energy calculation and fatigue assessment”. The Journal of Strain Analysis for Engineering Design, 45(4), 275-282, 2010.
  • Ozaltun H, Shen MH, George T, Cross C. “An energy based fatigue life prediction framework for in-service structural components”. Experimental Mechanics, 51(5), 707-718, 2011.
  • Kim YW, Kim G, Hong SG, Lee CS. “Energy-based approach to predict the fatigue life behavior of pre-strained Fe-18Mn TWIP steel”. Materials Science and Engineering: A, 528(13-14), 4696-4702, 2011.
  • Maksimovic S, Posavljak S, Maksimovic K, Nikolic V, Djurkovic V. “Total fatigue life estimation of notched structural components using low‐cycle fatigue properties”. Strain, 47(2), 341-349, 2011.
  • Mehran S, Rouhi S, Ramzani B, Barati E. “Fracture analysis of functionally graded materials with U‐and V‐notches under mode I loading using the averaged strain‐energy density criterion”. Fatigue & Fracture of Engineering Materials & Structures, 35(7), 614-627, 2012.
  • Zhu SP, Huang HZ, Ontiveros V, He LP, Modarres M. “Probabilistic low cycle fatigue life prediction using an energy-based damage parameter and accounting for model uncertainty”. International Journal of Damage Mechanics, 21(8), 1128-1153, 2012.
  • Zhu SP, Huang HZ, He LP, Liu Y, Wang Z. “A generalized energy-based fatigue-creep damage parameter for life prediction of turbine disk alloys”. Engineering Fracture Mechanics, 90, 89-100, 2012.
  • Walat K, Kurek M, Ogonowski P, Łagoda T. “The multiaxial random fatigue criteria based on strain and energy damage parameters on the critical plane for the low-cycle range”. International Journal of Fatigue, 37, 100-111, 2012.
  • Shariati M, Hatami H, Yarahmadi H, Eipakchi, HR. “An experimental study on the ratcheting and fatigue behavior of polyacetal under uniaxial cyclic loading”. Materials & Design, 34, 302-312, 2012.
  • Lazzarin P, Berto F, Ayatollahi MR. “Brittle failure of inclined key‐hole notches in isostatic graphite under in‐plane mixed mode loading”. Fatigue & Fracture of Engineering Materials & Structures, 36(9), 942-955, 2013.
  • Boulenouar A, Benseddiq N, Mazari M. “Strain energy density prediction of crack propagation for 2D linear elastic materials”. Theoretical and Applied Fracture Mechanics, 67, 29-37, 2013.
  • Lazzarin P, Campagnolo A, Berto F. “A comparison among some recent energy-and stress-based criteria for the fracture assessment of sharp V-notched components under Mode I loading”. Theoretical and Applied Fracture Mechanics, 71, 21-30, 2014.
  • Lazzarin P, Zappalorto M, Berto F. “Averaged strain energy density and J-integral for U-and blunt V-shaped notches under torsion”. International Journal of Fracture, 188(2), 173-186, 2014.
  • Ferro P. “The local strain energy density approach applied to pre‐stressed components subjected to cyclic load”. Fatigue & Fracture of Engineering Materials & Structures, 37(11), 1268-1280, 2014.
  • Berto F, Gallo P, Lazzarin P. “High temperature fatigue tests of a Cu-Be alloy and synthesis in terms of linear elastic strain energy density”. Key Engineering Materials, 627, 77-80, 2015.
  • Torabi AR, Campagnolo A, Berto F. “Local strain energy density to predict mode II brittle fracture in Brazilian disk specimens weakened by V-notches with end holes”. Materials & Design, 69, 22-29, 2015.
  • Gallo P, Berto F. “Advanced materials for applications at high temperature: fatigue assessment by means of local strain energy density”. Advanced Engineering Materials, 18(12), 2010-2017, 2016.
  • Wang RZ, Zhang XC, Tu ST, Zhu SP, Zhang CC. “A modified strain energy density exhaustion model for creep-fatigue life prediction”. International Journal of Fatigue, 90, 12-22, 2016.
  • Chandran KR, Cao F, Newman JC. “Fatigue crack growth in miniature specimens: The equivalence of ∆K-correlation and that based on the change in net-section strain energy density”. Scripta Materialia, 122, 18-21, 2016.
  • Zhu SP, Lei Q, Huang HZ, Yang YJ, Peng W. “Mean stress effect correction in strain energy-based fatigue life prediction of metals”. International Journal of Damage Mechanics, 26(8), 1219-1241, 2017.
  • Razavi SMJ, Aliha MRM, Berto F. “Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens”. Theoretical and Applied Fracture Mechanics, 97, 419-425, 2018.
  • Radaj D, Sonsino CM, Fricke W. Fatigue Assessment of Welded Joints by Local Approaches. Cambridge, England, Woodhead Publishing, 2006.
  • Karakas Ö. “Consideration of mean-stress effects on fatigue life of welded magnesium joints by the application of the Smith-Watson-Topper and reference radius concepts”. International Journal of Fatigue, 49, 1-17, 2013.
  • Karakaş Ö. “Application of neuber’s effective stress method for the evaluation of the fatigue behaviour of magnesium welds”. International Journal of Fatigue, 101, 115-126, 2017.
  • Karakaş Ö, Zhang G, Sonsino CM. “Critical distance approach for the fatigue strength assessment of magnesium welded joints in contrast to Neuber's effective stress method”. International Journal of Fatigue, 112, 21-35, 2018.
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Review Article
Authors

Özler Karakaş

Nail Tüzün This is me

Publication Date August 28, 2019
Published in Issue Year 2019 Volume: 25 Issue: 4

Cite

APA Karakaş, Ö., & Tüzün, N. (2019). State of the art review of the application of strain energy density in design against fatigue of welded joints. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(4), 462-467.
AMA Karakaş Ö, Tüzün N. State of the art review of the application of strain energy density in design against fatigue of welded joints. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. August 2019;25(4):462-467.
Chicago Karakaş, Özler, and Nail Tüzün. “State of the Art Review of the Application of Strain Energy Density in Design Against Fatigue of Welded Joints”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25, no. 4 (August 2019): 462-67.
EndNote Karakaş Ö, Tüzün N (August 1, 2019) State of the art review of the application of strain energy density in design against fatigue of welded joints. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25 4 462–467.
IEEE Ö. Karakaş and N. Tüzün, “State of the art review of the application of strain energy density in design against fatigue of welded joints”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 25, no. 4, pp. 462–467, 2019.
ISNAD Karakaş, Özler - Tüzün, Nail. “State of the Art Review of the Application of Strain Energy Density in Design Against Fatigue of Welded Joints”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25/4 (August 2019), 462-467.
JAMA Karakaş Ö, Tüzün N. State of the art review of the application of strain energy density in design against fatigue of welded joints. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25:462–467.
MLA Karakaş, Özler and Nail Tüzün. “State of the Art Review of the Application of Strain Energy Density in Design Against Fatigue of Welded Joints”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 25, no. 4, 2019, pp. 462-7.
Vancouver Karakaş Ö, Tüzün N. State of the art review of the application of strain energy density in design against fatigue of welded joints. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25(4):462-7.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.