Review
BibTex RIS Cite

Biomaterials used in orthopedic implants

Year 2020, Volume: 26 Issue: 1, 54 - 67, 20.02.2020

Abstract

Orthopedic biomaterials are used in replacement of joints or bones that are damaged by a disease such as osteoporosis or fixation of broken bones. Majority of these materials are metals. Non-metallic materials can be separated into three groups as ceramics, polymers and composites. In this study, the types, fundamental properties, advantages and disadvantages of biomaterials used in the production of orthopedic implants are summarized.

References

  • Williams DF. The Williams Dictionary of Biomaterials. Liverpool, Liverpool University Press, 2011.
  • Sukaryo SG, Purnama A, Hermawan H. Structure and properties of biomaterials. Editors: Mahyudin F, Hermawan H. Biomaterials and Medical Devices: A Perspective from an Emerging Country, Chambridge, Springer, 1-22, 2016.
  • Radha R, Sreekanth D. "Insight of magnesium alloys and composites for orthopedic implant applications-a review". Journal of Magnesium and Alloys, 5(3), 286-312, 2017.
  • Liu X, Chu PK, Ding C. "Surface modification of titanium, titanium alloys, and related materials for biomedical applications". Materials Science and Engineering: R: Reports, 47(3-4), 49-121, 2004.
  • Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudré C. "Review of titanium surface modification techniques and coatings for antibacterial applications". Acta Biomaterialia, 83, 37-54, 2019.
  • Chen SH, Ho SC, Chang CH, Chen CC, Say WC. "Influence of roughness on in-vivo properties of titanium implant surface and their electrochemical behavior". Surface and Coatings Technology, 302, 215-226, 2016.
  • Javadi A, Solouk A, Nazarpak MH, Bagheri F. "Surface engineering of titanium-based implants using electrospraying and dip coating methods". Materials Science and Engineering: C, 99, 620-630, 2019.
  • McEntire BJ, Bal BS, Rahaman MN, Chevalier J, Pezzotti G. "Ceramics and ceramic coatings in orthopaedics". Journal of the European Ceramic Society, 35(16), 4327-4369, 2015.
  • Zheng Y, Liu L, Xiong C, Zhang L. "Enhancement of bioactivity on modified polyetheretherketone surfaces with -COOH, -OH and -PO4H2 functional groups". Materials Letters, 213, 84-87, 2018.
  • Wu CY, Guan ZY, Lin PC, Chen ST, Lin P-K, Chen PC, et al. "Defined cell adhesion for silicon-based implant materials by using vapor-deposited functional coatings". Colloids and Surfaces B: Biointerfaces, 175, 545-553, 2019.
  • Bonnheim N, Ansari F, Regis M, Bracco P, Pruitt L. "Effect of carbon fiber type on monotonic and fatigue properties of orthopedic grade PEEK". Journal of the Mechanical Behavior of Biomedical Materials, 90, 484-492, 2019.
  • Ballo AM, Cekic-Nagas I, Ergun G, Lassila L, Palmquist A, Borchardt P, et al. "Osseointegration of fiber-reinforced composite implants: Histological and ultrastructural observations". Dental Materials, 30(12), 384-395, 2014.
  • Qin W, Li Y, Ma J, Liang Q, Tang B. "Mechanical properties and cytotoxicity of hierarchical carbon fiber-reinforced poly (ether-ether-ketone) composites used as implant materials". Journal of the Mechanical Behavior of Biomedical Materials, 89, 227-233, 2019.
  • Yang H, Qu X, Lin W, Wang C, Zhu D, Dai K, et al. "In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications". Acta Biomaterialia, 71, 200-214, 2018.
  • Sequeira S, Fernandes MH, Neves N, Almeida MM. "Development and characterization of zirconia-alumina composites for orthopedic implants". Ceramics International, 43(1), 693-703, 2017.
  • Arifin A, Sulong AB, Muhamad N, Syarif J, Ramli MI. "Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review". Materials & Design, 55, 165-175, 2014.
  • Li Y, Munir KS, Lin J, Wen C. "Titanium-niobium pentoxide composites for biomedical applications". Bioactive Materials, 1(2), 127-131, 2016.
  • Takemoto M, Fujibayashi S, Neo M, Suzuki J, Kokubo T, Nakamura T. "Mechanical properties and osteoconductivity of porous bioactive titanium". Biomaterials, 26(30), 6014-6023, 2005.
  • Karageorgiou V, Kaplan D. "Porosity of 3D biomaterial scaffolds and osteogenesis". Biomaterials, 26(27), 5474-5491, 2005.
  • Domínguez-Trujillo C, Beltrán AM, Garvi MD, Salazar-Moya A, Lebrato J, Hickey DJ, et al. "Bacterial behavior on coated porous titanium substrates for biomedical applications". Surface and Coatings Technology, 357, 896-902, 2019.
  • Janson O, Gururaj S, Pujari-Palmer S, Karlsson Ott M, Strømme M, Engqvist H, et al. "Titanium surface modification to enhance antibacterial and bioactive properties while retaining biocompatibility". Materials Science and Engineering: C, 96, 272-279, 2019.
  • Caplin JD, García AJ. "Implantable antimicrobial biomaterials for local drug delivery in bone infection models". Acta Biomaterialia, 93, 2-11, 2019.
  • Hench LL. "Third-Generation biomedical materials". Science, 295(5557), 1014-1017, 2002.
  • Hench LL. "Biomaterials". Science, 208(4446), 826-831, 1980.
  • Yamamuro T, Hench LL, Wilson J. CRC Handbook of Bioactive Ceramics Volume II Calcium Phosphate and Hydroxylapatite Ceramics. Florida, USA, CRC Press, 1990.
  • Klein CPAT, Wolke JGC, de Groot K. Stability of Calcium Phosphate Ceramics And Plasma Sprayed Coating. Editors: Hench LL, June W. An Introduction to Bioceramics, 305–325, London, UK, World Scientific, 2013.
  • Older J. "Charnley low-friction arthroplasty". The Journal of Arthroplasty, 17(6), 675-680, 2002.
  • Wroblewski BM, Siney PD, Fleming PA. "Charnley low-friction arthroplasty: SURVIVAL PATTERNS TO 38 YEARS". Journal of Bone and Joint Surgery-British Volume, 89-B(8), 1015-1018, 2007.
  • Wroblewski BM, Siney PD, Fleming PA. Long-term outcome after charnley low frictional torque arthroplasty. Editors: Breusch S, Malchau H. The Well-Cemented Total Hip Arthroplasty Theory and Practice, 221-227, New York, USA, Springer, 2005.
  • WB M, FP A, SP D. "Charnley low-frictional torque arthroplasty of the hip". The Journal of Bone and Joint Surgery. British volume, 81-B(3), 427-430, 1999.
  • Hench LL, Wilson J. Clinical Performance of Skeletal Prostheses. London, Chapman & Hall, 1996.
  • Ralston SH. "Bone structure and metabolism". Medicine, 45(9), 560-564, 2017.
  • Nath S, Basu B. Materials for Orthopedic Applications. Advanced Biomaterials, Hoboken, NJ, USA, John Wiley & Sons, Inc., 2010.
  • Batchelor A, Chandrasekaran M. Service Characteristics Of Biomedical Materials And Implants. London, UK, Imperial College Press, 2004.
  • Navarro M, Michiardi A, Castan O, Planell JA. "Biomaterials in orthopaedics". Journal of The Royal Society Interface, 5(27), 1137-58, 2008.
  • Charnley J. "Anchorage of the femoral head prosthesis to the shaft of the femur". The Journal of Bone and Joint Surgery. British Volume, 42-B(1), 28-30, 1960.
  • Rodriguez-Gonzalez FÁ. Introduction to biomaterials in orthopaedic surgery. Editors: Rodriguez-Gonzalez FÁ, Biomaterials In Orthopaedic Surgery, 1-10, Ohio, USA, ASM International, 2009.
  • Mahyudin F, Widhiyanto L, Hermawan H. Biomaterials in orthopaedics. Editors: Mahyudin F, Hermawan H. Biomaterials and Medical Devices A Perspective from an Emerging Country, 161-181, Cambridge, UK, Springer, 2016.
  • Patel B, Favaro G, Inam F, Reece MJ, Angadji A, Bonfield W, et al. "Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance". Materials Science and Engineering: C, 32(5), 1222-1229, 2012.
  • Zhao C, Zhou J, Mei Q, Ren F. "Microstructure and dry sliding wear behavior of ultrafine-grained Co-30 at% Cr alloy at room and elevated temperatures". Journal of Alloys and Compounds, 770, 276-284, 2019.
  • Okazaki Y, Gotoh E. "Comparison of metal release from various metallic biomaterials in vitro". Biomaterials, 26(1), 11-21, 2005.
  • Wapner KL. "Implications of metallic corrosion in total knee arthroplasty". Clinical Orthopaedics and Related Research, (271), 12-20, 1991.
  • McGregor DB, Baan RA, Partensky C, Rice JM, Wilbourn JD. "Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodies - A report of an IARC Monographs Programme Meeting". European Journal of Cancer, 36(3), 307-313, 2000.
  • Bahl S, Das S, Suwas S, Chatterjee K. "Engineering the next-generation tin containing β titanium alloys with high strength and low modulus for orthopedic applications". Journal of the Mechanical Behavior of Biomedical Materials, 78, 124-133, 2018.
  • Niinomi M, Nakai M, Hieda J. "Development of new metallic alloys for biomedical applications". Acta Biomaterialia, 8(11), 3888-3903, 2012.
  • Chen Q, Thouas GA. "Metallic implant biomaterials". Materials Science and Engineering R: Reports, 87, 1-57, 2015.
  • Pham V-H, Lee S-H, Li Y, Kim H-E, Shin K-H, Koh Y-H. "Utility of tantalum (Ta) coating to improve surface hardness in vitro bioactivity and biocompatibility of Co-Cr". Thin Solid Films, 536, 269-274, 2013.
  • Rupérez E, Manero JM, Riccardi K, Li Y, Aparicio C, Gil FJ. "Development of tantalum scaffold for orthopedic applications produced by space-holder method". Materials & Design, 83, 112-119, 2015.
  • Levine BR, Sporer S, Poggie RA, Della Valle CJ, Jacobs JJ. "Experimental and clinical performance of porous tantalum in orthopedic surgery". Biomaterials, 27(27), 4671-4681, 2006.
  • Zhao G, Li S, Chen X, Qu X, Chen R, Wu Y, et al. "Porous tantalum scaffold fabricated by gel casting based on 3D printing and electrolysis". Materials Letters, 239, 5-8, 2019.
  • Pradhan D, Wren AW, Misture ST, Mellott NP. "Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants". Materials Science and Engineering: C, 58, 918-926, 2016.
  • Ozan S, Lin J, Li Y, Wen C. "New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications". Journal of the Mechanical Behavior of Biomedical Materials, 75, 119-127, 2017.
  • La Grange DD, Goebbels N, Santana A, Heuberger R, Imwinkelried T, Eschbach L, et al. "Effect of niobium onto the tribological behavior of cathodic arc deposited Nb-Ti-N coatings". Wear, 368-369, 60-69, 2016.
  • Agarwal R, García AJ. "Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair". Advanced Drug Delivery Reviews, 94, 53-62, 2015.
  • Shalabi MM, Gortemaker A, Hof Ma. V., Jansen JA., Creugers NHJ. "Implant Surface Roughness and Bone Healing: a Systematic Review". Journal of Dental Research, 85(6), 496-500, 2006.
  • Anselme K, Bigerelle M. "Topography effects of pure titanium substrates on human osteoblast long-term adhesion". Acta Biomaterialia, 1(2), 211-222, 2005.
  • Keselowsky BG, Collard DM, Garcia AJ. "Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation". Proceedings of the National Academy of Sciences of the United States of America, 102(17), 5953-5957, 2005.
  • Keselowsky BG, Collard DM, García AJ. "Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion". Journal of Biomedical Materials Research Part A, 66A(2), 247-259, 2003.
  • Sul YT, Johansson CB, Jeong Y, Wennerberg A, Albrektsson T. "Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides". Clinical Oral Implants Research, 13(3), 252-259, 2002.
  • Rupp F, Scheideier L, Olshanska N, De Wild M, Wieland M, Geis-Gerstorfer J. "Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces". Journal of Biomedical Materials Research - Part A, 76(2), 323-334, 2006.
  • Søballe K. "Hydroxyapatite ceramic coating for bone implant fixation: Mechanical and histological studies in dogs". Acta Orthopaedica, 64(S255), 1-58, 1993.
  • Cook SD, Thomas KA, Delton JE, Volkman TK, Whitecloud TS, Key JF. "Hydroxylapatite coating of porous implants improves bone ingrowth and interface attachment strength". Journal of Biomedical Materials Research, 26(8), 989-1001, 1992.
  • Moroni A, Hoang-Kim A, Lio V, Giannini S. "Current augmentation fixation techniques for the osteoporotic patient". Scandinavian Journal of Surgery, 95(2), 103-109, 2006.
  • Barrère F, van der Valk CM, Meijer G, Dalmeijer RAJ, de Groot K, Layrolle P. "Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats". Journal of Biomedical Materials Research Part B: Applied Biomaterials, 67B(1), 655-665, 2003.
  • García AJ. "Get a grip: Integrins in cell-biomaterial interactions". Biomaterials, 26(36), 7525-7529, 2005.
  • Macdonald ML, Samuel RE, Shah NJ, Padera RF, Beben YM, Hammond PT. "Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants". Biomaterials, 32(5), 1446-1453, 2011.
  • Abtahi J, Tengvall P, Aspenberg P. "A bisphosphonate-coating improves the fixation of metal implants in human bone. A randomized trial of dental implants". Bone, 50(5), 1148-1151, 2012.
  • Pauly S, Luttosch F, Morawski M, Haas NP, Schmidmaier G, Wildemann B. "Simvastatin locally applied from a biodegradable coating of osteosynthetic implants improves fracture healing comparable to BMP-2 application". Bone, 45(3), 505-511, 2009.
  • Choi J, Konno T, Takai M, Ishihara K. "Controlled drug release from multilayered phospholipid polymer hydrogel on titanium alloy surface". Biomaterials, 30(28), 5201-5208, 2009.
  • Song W, Yu X, Markel DC, Shi T, Ren W. "Coaxial PCL/PVA electrospun nanofibers: Osseointegration enhancer and controlled drug release device". Biofabrication, 5(3) 2013.
  • Shi D, Wen X. Bioactive Ceramics Structure, Synthesis and Mechanical Properties. Editor: Shi D. Introduction to Biomaterials, 13-26, Beijing, China, Tsinghua University Press, 2005.
  • Kurtz S. PEEK Biomaterials Handbook. 1st ed. Oxford, USA, Elsevier, 2012.
  • Williams DF, McNamara A, Turner RM. "Potential of polyetheretherketone (PEEK) and carbon-fibre-reinforced PEEK in medical applications". Journal of Materials Science Letters, 6(2), 188-190, 1987.
  • Kurtz SM, Devine JN. "PEEK biomaterials in trauma, orthopedic, and spinal implants". Biomaterials, 28(32), 4845-4869, 2007.
  • Skinner H. "Composite Technology for Total Hip Arthroplasty". Clinical Orthopaedics and Related Research, 235, 224-236, 1988.
  • Liao K. "Performance characterization and modeling of a composite hip prosthesis". Experimental Techniques, 18(5), 33-38, 1994.
  • Maharaj G, Jamison R. "Interoperative impact: characterization and laboratory simulation on composite hip prostheses". Composite Materials for Implant Applications in the Human Body: Characterization and Testing, 98-108, 1993.
  • Kelsey DJ, Springer GS, Goodman SB. "Composite implant for bone replacement". Journal of Composite Materials, 31(16), 1593-1632, 1997.
  • Corvelli AA, Biermann PJ, Roberts JC. "Design, analysis, and fabrication of a composite segmental bone replacement implant". Journal of Advanced Materials, 28(3), 2-7, 1997.
  • Toth JM, Wang M, Estes BT, Scifert JL, Seim HB, Turner AS. "Polyetheretherketone as a biomaterial for spinal applications". Biomaterials, 27(3), 324-334, 2006.
  • Brantigan JW, Neidre A, Toohey JS. "The Lumbar I/F Cage for posterior lumbar interbody fusion with the variable screw placement system: 10-year results of a food and drug administration clinical trial". Spine Journal, 4(6), 681-688, 2004.
  • Akhavan S, Matthiesen MM, Schulte L, Penoyar T, Kraay MJ, Rimnac CM, et al. "Clinical and histologic results related to a low-modulus composite total hip replacement stem". Journal of Bone and Joint Surgery - Series A, 88(6), 1308-1314, 2006.
  • Glassman A, Crowninshield R, Schenck R, Herberts P. "A low stiffness composite biologically fixed prosthesis". Clinical Orthopaedics and Related Research, 393, 128-136, 2001.
  • Kärrholm J, Anderberg C, Snorrason F, Thanner J, Langeland N, Malchau H, et al. "Evaluation of a femoral stem with reduced stiffness. A randomized study with use of radiostereometry and bone densitometry". The Journal of Bone and Joint Surgery-American Volume, 84(9), 1651-1658, 2002.
  • Brantigan JW, Steffee AD, Lewis ML, Quinn LM, Persenaire JM. "Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system: two-year results from a food and drug administration investigational device exemption clinical trial". Spine, 25(11), 1437-1446, 2000.
  • Chung DDL. Composite Materials: Functional Materials for Modern Technologies. 2002.
  • Li X, Chu C, Chu PK. "Effects of external stress on biodegradable orthopedic materials: a review". Bioactive Materials, 1(1), 77-84, 2016.
  • Tan L, Yu X, Wan P, Yang K. "Biodegradable materials for bone repairs: a review". Journal of Materials Science & Technology, 29(6), 503-513, 2013.
  • Li N, Zheng Y. "Novel magnesium alloys developed for biomedical application: a review". Journal of Materials Science & Technology, 29(6), 489-502, 2013.
  • Witte F. "The history of biodegradable magnesium implants: A review". Acta Biomaterialia, 6(5), 1680-1692, 2010.
  • Staiger MP, Pietak AM, Huadmai J, Dias G. "Magnesium and its alloys as orthopedic biomaterials: a review". Biomaterials, 27(9), 1728-1734, 2006.
  • Tian L, Tang N, Ngai T, Wu C, Ruan Y, Huang L, et al. "Hybrid fracture fixation systems developed for orthopaedic applications: a general review". Journal of Orthopaedic Translation, 16, 1-13, 2019.
  • Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Filho RM. "Poly-lactic acid synthesis for application in biomedical devices-a review". Biotechnology Advances, 30(1), 321-328, 2012.
  • Wen X, Tresco PA. "Fabrication and characterization of permeable degradable poly(dl-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels". Biomaterials, 27(20), 3800-3809, 2006.
  • Shin H, Jo S, Mikos AG. "Biomimetic materials for tissue engineering". Biomaterials, 24(24), 4353-4364, 2003.
  • Nabiyouni M, Brückner T, Zhou H, Gbureck U, Bhaduri SB. "Magnesium-based bioceramics in orthopedic applications". Acta Biomaterialia, 66, 23-43, 2018.
  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. "Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering". Biomaterials, 27(18), 3413-3431, 2006.
  • Athanasiou KA, Niederauer GG, Agrawal CM. "Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers". Biomaterials, 17(2), 93-102, 1996.
  • Yao Y, Liu S, Swain MV, Zhang X, Zhao K, Jian Y. "Effects of acid-alkali treatment on bioactivity and osteoinduction of porous titanium: An in vitro study". Materials Science and Engineering: C, 94, 200-210, 2019.
  • Camargo WA, Takemoto S, Hoekstra JW, Leeuwenburgh SCG, Jansen JA, van den Beucken JJJP, et al. "Effect of surface alkali-based treatment of titanium implants on ability to promote in vitro mineralization and in vivo bone formation". Acta Biomaterialia, 57, 511-523, 2017.
  • Khodaei M, Hossein Kelishadi S. "The effect of different oxidizing ions on hydrogen peroxide treatment of titanium dental implant". Surface and Coatings Technology, 353, 158-162, 2018.
  • Karthega M, Nagarajan S, Rajendran N. "In vitro studies of hydrogen peroxide treated titanium for biomedical applications". Electrochimica Acta, 55(6), 2201-2209, 2010.
  • Vilardell AM, Cinca N, Garcia-Giralt N, Müller C, Dosta S, Sarret M, et al. "In-vitro study of hierarchical structures: Anodic oxidation and alkaline treatments onto highly rough titanium cold gas spray coatings for biomedical applications". Materials Science and Engineering: C, 91, 589-596, 2018.
  • Alves AC, Wenger F, Ponthiaux P, Celis J-P, Pinto AM, Rocha LA, et al. "Corrosion mechanisms in titanium oxide-based films produced by anodic treatment". Electrochimica Acta, 234, 16-27, 2017.
  • Catauro M, Bollino F, Papale F. "Surface modifications of titanium implants by coating with bioactive and biocompatible poly (ε-caprolactone)/SiO2 hybrids synthesized via sol-gel". Arabian Journal of Chemistry, 11(7), 1126-1133, 2018.
  • Domínguez-Trujillo C, Peón E, Chicardi E, Pérez H, Rodríguez-Ortiz JA, Pavón JJ, et al. "Sol-gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications". Surface and Coatings Technology, 333, 158-162, 2018.
  • Catauro M, Bollino F, Papale F, Giovanardi R, Veronesi P. "Corrosion behavior and mechanical properties of bioactive sol-gel coatings on titanium implants". Materials Science and Engineering: C, 43, 375-382, 2014.
  • Catauro M, Bollino F, Papale F, Ferrara C, Mustarelli P. "Silica-polyethylene glycol hybrids synthesized by sol-gel: Biocompatibility improvement of titanium implants by coating". Materials Science and Engineering: C, 55, 118-125, 2015.
  • Batebi K, Abbasi Khazaei B, Afshar A. "Characterization of sol-gel derived silver/fluor-hydroxyapatite composite coatings on titanium substrate". Surface and Coatings Technology, 352, 522-528, 2018.
  • Cotolan N, Rak M, Bele M, Cör A, Muresan LM, Milošev I. "Sol-gel synthesis, characterization and properties of TiO2 and Ag-TiO2 coatings on titanium substrate". Surface and Coatings Technology, 307, 790-799, 2016.
  • Catauro M, Papale F, Bollino F. "Characterization and biological properties of TiO2/PCL hybrid layers prepared via sol-gel dip coating for surface modification of titanium implants". Journal of Non-Crystalline Solids, 415, 9-15, 2015.
  • Yazıcı M, Çomaklı O, Yetim T, Yetim AF, Çelik A. "Effect of sol aging time on the wear properties of TiO2-SiO2 composite films prepared by a sol-gel method". Tribology International, 104, 175-182, 2016.
  • Choudhury P, Agrawal DC. "Sol-gel derived hydroxyapatite coatings on titanium substrates". Surface and Coatings Technology, 206(2-3), 360-365, 2011.
  • Usinskas P, Stankeviciute Z, Beganskiene A, Kareiva A. "Sol-gel derived porous and hydrophilic calcium hydroxyapatite coating on modified titanium substrate". Surface and Coatings Technology, 307, 935-940, 2016.
  • Shunzhi Y, Zhonghai L, Liwei H, Yantao Z, Tao F. "Biocompatible MgO film on titanium substrate prepared by sol-gel method". Rare Metal Materials and Engineering, 47(9), 2663-2667, 2018.
  • Grögler T, Zeiler E, Hörner A, Rosiwal SM, Singer RF. "Microwave-plasma-CVD of diamond coatings onto titanium and titanium alloys". Surface and Coatings Technology, 98(1-3), 1079-1091, 1998.
  • Zhu Y, Wang W, Jia X, Akasaka T, Liao S, Watari F. "Deposition of TiC film on titanium for abrasion resistant implant material by ion-enhanced triode plasma CVD". Applied Surface Science, 262, 156-158, 2012.
  • Liu YC, Lin GS, Wang JY, Cheng CS, Yang YC, Lee BS, et al. "Synthesis and characterization of porous hydroxyapatite coatings deposited on titanium by flame spraying". Surface and Coatings Technology, 349, 357-363, 2018.
  • Gkomoza P, Lampropoulos GS, Vardavoulias M, Pantelis DI, Karakizis PN, Sarafoglou C. "Microstructural investigation of porous titanium coatings, produced by thermal spraying techniques, using plasma atomization and hydride-dehydride powders, for orthopedic implants". Surface and Coatings Technology, 357, 947-956, 2019.
  • Hermann-Muñoz JA, Rincón-López JA, Clavijo-Mejía GA, Giraldo-Betancur AL, Alvarado-Orozco JM, De Vizcaya-Ruiz A, et al. "Influence of HVOF parameters on HAp coating generation: An integrated approach using process maps". Surface and Coatings Technology, 358, 299-307, 2019.
  • Kawakita J, Kuroda S, Fukushima T, Katanoda H, Matsuo K, Fukanuma H. "Dense titanium coatings by modified HVOF spraying". Surface and Coatings Technology, 201(3-4), 1250-1255, 2006.
  • Utu ID, Marginean G, Hulka I, Serban VA, Cristea D. "Properties of the thermally sprayed Al2O3-TiO2 coatings deposited on titanium substrate". International Journal of Refractory Metals and Hard Materials, 51, 118-123, 2015.
  • Jafari H, Emami S, Mahmoudi Y. "Numerical investigation of dual-stage high velocity oxy-fuel (HVOF) thermal spray process: A study on nozzle geometrical parameters". Applied Thermal Engineering, 111, 745-758, 2017.
  • Lima RS, Khor KA, Li H, Cheang P, Marple BR. "HVOF spraying of nanostructured hydroxyapatite for biomedical applications". Materials Science and Engineering: A, 396(1-2), 181-187, 2005.
  • Gryshkov O, Klyui NI, Temchenko VP, Kyselov VS, Chatterjee A, Belyaev AE, et al. "Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants". Materials Science and Engineering: C, 68, 143-152, 2016.
  • Marin E, Offoiach R, Regis M, Fusi S, Lanzutti A, Fedrizzi L. "Diffusive thermal treatments combined with PVD coatings for tribological protection of titanium alloys". Materials & Design, 89, 314-322, 2016.
  • Probst J, Gbureck U, Thull R. "Binary nitride and oxynitride PVD coatings on titanium for biomedical applications". Surface and Coatings Technology, 148(2-3), 226-233, 2001.
  • Veronesi F, Giavaresi G, Fini M, Longo G, Ioannidu CA, Scotto d’Abusco A, et al. "Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon". Materials Science and Engineering: C, 70, 264-271, 2017.
  • Song DH, Uhm SH, Kim S-E, Kwon JS, Han JG, Kim KN. "Synthesis of titanium oxide thin films containing antibacterial silver nanoparticles by a reactive magnetron co-sputtering system for application in biomedical implants". Materials Research Bulletin, 47(10), 2994-2998, 2012.
  • Qi J, Yang Y, Zhou M, Chen Z, Chen K. "Effect of transition layer on the performance of hydroxyapatite/titanium nitride coating developed on Ti-6Al-4V alloy by magnetron sputtering". Ceramics International, 45(4), 4863-4869, 2019.
  • Kang S, Tu W, Han J, Li Z, Cheng Y. "A significant improvement of the wear resistance of Ti6Al4V alloy by a combined method of magnetron sputtering and plasma electrolytic oxidation (PEO)". Surface and Coatings Technology, 358, 879-890, 2019.
  • Wu WY, Chan MY, Hsu YH, Chen GZ, Liao SC, Lee CH. "Bioapplication of TiN thin films deposited using high power impulse magnetron sputtering". Surface and Coatings Technology, 362, 167-175, 2019.
  • Rautray TR, Narayanan R, Kim K-H. "Ion implantation of titanium based biomaterials". Progress in Materials Science, 56(8), 1137-1177, 2011.
  • Matos AO, Ricomini-Filho AP, Beline T, Ogawa ES, Costa-Oliveira BE, de Almeida AB, et al. "Three-species biofilm model onto plasma-treated titanium implant surface". Colloids and Surfaces B: Biointerfaces, 152, 354-366, 2017.
  • Wierzchoń T, Czarnowska E, Grzonka J, Sowińska A, Tarnowski M, Kamiński J, et al. "Glow discharge assisted oxynitriding process of titanium for medical application". Applied Surface Science, 334, 74-79, 2015.
  • Ma A, Liu D, Tang C, Zhang X, Liu C. "Influence of glow plasma Co-based alloying layer on sliding wear and fretting wear resistance of titanium alloy". Tribology International, 125, 85-94, 2018.
  • Huang CF, Cheng HC, Liu CM, Chen CC, Ou KL. "Microstructure and phase transition of biocompatible titanium oxide film on titanium by plasma discharging". Journal of Alloys and Compounds, 476(1-2), 683-688, 2009.
  • Affatato S, Grillini L, Battaglia S, Taddei P, Modena E, Sudanese A. "Does knee implant size affect wear variability?". Tribology International, 66, 174-181, 2013.
  • Uwais ZA, Hussein MA, Samad MA, Al-Aqeeli N. "Surface Modification of Metallic Biomaterials for Better Tribological Properties: A Review". Arabian Journal for Science and Engineering, 42(11), 4493-4512, 2017.
  • Hussein MA, Mohammed AS, Al-Aqeeli N. "Wear Characteristics of Metallic Biomaterials: A Review". Materials, 8(5), 2749-2768, 2015.
  • Lohmann CH, Hameister R, Singh G. "Allergies in orthopaedic and trauma surgery". Orthopaedics & Traumatology: Surgery & Research, 103(1), 75-81, 2017.
  • Zhang T, Harrison NM, McDonnell PF, McHugh PE, Leen SB. "A finite element methodology for wear-fatigue analysis for modular hip implants". Tribology International, 65, 113-127, 2013.
  • Ginebra MP, Montufar EB. Cements as Bone Repair Materials. Editors: Pawelec KM, Planell JA. Bone Repair Biomaterials. 2nd Edition, 233-271, Cambridge, UK, Woodhead Publishing, 2019.
  • Teoh SH. "Fatigue of biomaterials: A review". International Journal of Fatigue, 22(10), 825-837, 2000.
  • Niinomi M. "Fatigue characteristics of metallic biomaterials". International Journal of Fatigue, 29(6), 992-1000, 2007.
  • Vadiraj A, Kamaraj M. "Effect of surface treatments on fretting fatigue damage of biomedical titanium alloys". Tribology International, 40(1), 82-88, 2007.
  • Fleck C, Eifler D. "Corrosion, fatigue and corrosion fatigue behaviour of metal implant materials, especially titanium alloys". International Journal of Fatigue, 32(6), 929-935, 2010.
  • Giori NJ. "Unexpected finding of a fractured metal prosthetic femoral head in a nonmodular implant during revision total hip arthroplasty". Journal of Arthroplasty, 25(4) 2010.
  • Gervais B, Vadean A, Raison M, Brochu M. "Failure analysis of a 316L stainless steel femoral orthopedic implant". Case Studies in Engineering Failure Analysis, 5-6, 30-38, 2016.
  • Zhang QH, Cossey A, Tong J. "Stress shielding in periprosthetic bone following a total knee replacement: Effects of implant material, design and alignment". Medical Engineering & Physics, 38(12), 1481-1488, 2016.
  • Sumner DR. "Long-term implant fixation and stress-shielding in total hip replacement". Journal of Biomechanics, 48(5), 797-800, 2015.
  • Barua E, Das S, Deoghare AB. "Development of computational Tibia model to investigate stress shielding effect at healing stages". Materials Today: Proceedings, 5(5), 13267-13275, 2018.
  • Zhang QH, Cossey A, Tong J. "Stress shielding in bone of a bone-cement interface". Medical Engineering & Physics, 38(4), 423-426, 2016.
  • Denard PJ, Raiss P, Gobezie R, Edwards TB, Lederman E. "Stress shielding of the humerus in press-fit anatomic shoulder arthroplasty: review and recommendations for evaluation". Journal of Shoulder and Elbow Surgery, 27(6), 1139-1147, 2018.
  • Shi L, Shi L, Wang L, Duan Y, Lei W, Wang Z, et al. "The Improved Biological Performance of a Novel Low Elastic Modulus Implant". PLoS one, 8(2), 4-9, 2013.
  • Rahimizadeh A, Nourmohammadi Z, Arabnejad S, Tanzer M, Pasini D. "Porous architected biomaterial for a tibial-knee implant with minimum bone resorption and bone-implant interface micromotion". Journal of the Mechanical Behavior of Biomedical Materials, 78(November 2017), 465-479, 2018.
  • Arabnejad S, Johnston B, Tanzer M, Pasini D. "Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty". Journal of Orthopaedic Research, 35(8), 1774-1783, 2017.

Ortopedik implantlarda kullanılan biyomalzemeler

Year 2020, Volume: 26 Issue: 1, 54 - 67, 20.02.2020

Abstract

Ortopedide biyomalzemeler, travma sonucu kırılan kemiklerin iyileşmesi için sabitleme ya da osteoporoz gibi bir hastalık tarafından hasar gören eklem ya da kemiklerin yerini alması amacıyla kullanılır. Bu malzemelerin çoğunluğunu metaller oluşturmaktadır. Metal olmayan malzemeler ise seramikler, polimerler ve kompozitler olarak üçe ayrılabilir. Bu çalışmada ortopedik implantların üretiminde kullanılan biyomalzemelerin çeşitleri, temel özellikleri, avantaj ve dezavantajları, kullanım alanları ve malzeme seçimine bağlı olarak oluşabilecek sorunlar özetlenmiştir.

References

  • Williams DF. The Williams Dictionary of Biomaterials. Liverpool, Liverpool University Press, 2011.
  • Sukaryo SG, Purnama A, Hermawan H. Structure and properties of biomaterials. Editors: Mahyudin F, Hermawan H. Biomaterials and Medical Devices: A Perspective from an Emerging Country, Chambridge, Springer, 1-22, 2016.
  • Radha R, Sreekanth D. "Insight of magnesium alloys and composites for orthopedic implant applications-a review". Journal of Magnesium and Alloys, 5(3), 286-312, 2017.
  • Liu X, Chu PK, Ding C. "Surface modification of titanium, titanium alloys, and related materials for biomedical applications". Materials Science and Engineering: R: Reports, 47(3-4), 49-121, 2004.
  • Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudré C. "Review of titanium surface modification techniques and coatings for antibacterial applications". Acta Biomaterialia, 83, 37-54, 2019.
  • Chen SH, Ho SC, Chang CH, Chen CC, Say WC. "Influence of roughness on in-vivo properties of titanium implant surface and their electrochemical behavior". Surface and Coatings Technology, 302, 215-226, 2016.
  • Javadi A, Solouk A, Nazarpak MH, Bagheri F. "Surface engineering of titanium-based implants using electrospraying and dip coating methods". Materials Science and Engineering: C, 99, 620-630, 2019.
  • McEntire BJ, Bal BS, Rahaman MN, Chevalier J, Pezzotti G. "Ceramics and ceramic coatings in orthopaedics". Journal of the European Ceramic Society, 35(16), 4327-4369, 2015.
  • Zheng Y, Liu L, Xiong C, Zhang L. "Enhancement of bioactivity on modified polyetheretherketone surfaces with -COOH, -OH and -PO4H2 functional groups". Materials Letters, 213, 84-87, 2018.
  • Wu CY, Guan ZY, Lin PC, Chen ST, Lin P-K, Chen PC, et al. "Defined cell adhesion for silicon-based implant materials by using vapor-deposited functional coatings". Colloids and Surfaces B: Biointerfaces, 175, 545-553, 2019.
  • Bonnheim N, Ansari F, Regis M, Bracco P, Pruitt L. "Effect of carbon fiber type on monotonic and fatigue properties of orthopedic grade PEEK". Journal of the Mechanical Behavior of Biomedical Materials, 90, 484-492, 2019.
  • Ballo AM, Cekic-Nagas I, Ergun G, Lassila L, Palmquist A, Borchardt P, et al. "Osseointegration of fiber-reinforced composite implants: Histological and ultrastructural observations". Dental Materials, 30(12), 384-395, 2014.
  • Qin W, Li Y, Ma J, Liang Q, Tang B. "Mechanical properties and cytotoxicity of hierarchical carbon fiber-reinforced poly (ether-ether-ketone) composites used as implant materials". Journal of the Mechanical Behavior of Biomedical Materials, 89, 227-233, 2019.
  • Yang H, Qu X, Lin W, Wang C, Zhu D, Dai K, et al. "In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications". Acta Biomaterialia, 71, 200-214, 2018.
  • Sequeira S, Fernandes MH, Neves N, Almeida MM. "Development and characterization of zirconia-alumina composites for orthopedic implants". Ceramics International, 43(1), 693-703, 2017.
  • Arifin A, Sulong AB, Muhamad N, Syarif J, Ramli MI. "Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review". Materials & Design, 55, 165-175, 2014.
  • Li Y, Munir KS, Lin J, Wen C. "Titanium-niobium pentoxide composites for biomedical applications". Bioactive Materials, 1(2), 127-131, 2016.
  • Takemoto M, Fujibayashi S, Neo M, Suzuki J, Kokubo T, Nakamura T. "Mechanical properties and osteoconductivity of porous bioactive titanium". Biomaterials, 26(30), 6014-6023, 2005.
  • Karageorgiou V, Kaplan D. "Porosity of 3D biomaterial scaffolds and osteogenesis". Biomaterials, 26(27), 5474-5491, 2005.
  • Domínguez-Trujillo C, Beltrán AM, Garvi MD, Salazar-Moya A, Lebrato J, Hickey DJ, et al. "Bacterial behavior on coated porous titanium substrates for biomedical applications". Surface and Coatings Technology, 357, 896-902, 2019.
  • Janson O, Gururaj S, Pujari-Palmer S, Karlsson Ott M, Strømme M, Engqvist H, et al. "Titanium surface modification to enhance antibacterial and bioactive properties while retaining biocompatibility". Materials Science and Engineering: C, 96, 272-279, 2019.
  • Caplin JD, García AJ. "Implantable antimicrobial biomaterials for local drug delivery in bone infection models". Acta Biomaterialia, 93, 2-11, 2019.
  • Hench LL. "Third-Generation biomedical materials". Science, 295(5557), 1014-1017, 2002.
  • Hench LL. "Biomaterials". Science, 208(4446), 826-831, 1980.
  • Yamamuro T, Hench LL, Wilson J. CRC Handbook of Bioactive Ceramics Volume II Calcium Phosphate and Hydroxylapatite Ceramics. Florida, USA, CRC Press, 1990.
  • Klein CPAT, Wolke JGC, de Groot K. Stability of Calcium Phosphate Ceramics And Plasma Sprayed Coating. Editors: Hench LL, June W. An Introduction to Bioceramics, 305–325, London, UK, World Scientific, 2013.
  • Older J. "Charnley low-friction arthroplasty". The Journal of Arthroplasty, 17(6), 675-680, 2002.
  • Wroblewski BM, Siney PD, Fleming PA. "Charnley low-friction arthroplasty: SURVIVAL PATTERNS TO 38 YEARS". Journal of Bone and Joint Surgery-British Volume, 89-B(8), 1015-1018, 2007.
  • Wroblewski BM, Siney PD, Fleming PA. Long-term outcome after charnley low frictional torque arthroplasty. Editors: Breusch S, Malchau H. The Well-Cemented Total Hip Arthroplasty Theory and Practice, 221-227, New York, USA, Springer, 2005.
  • WB M, FP A, SP D. "Charnley low-frictional torque arthroplasty of the hip". The Journal of Bone and Joint Surgery. British volume, 81-B(3), 427-430, 1999.
  • Hench LL, Wilson J. Clinical Performance of Skeletal Prostheses. London, Chapman & Hall, 1996.
  • Ralston SH. "Bone structure and metabolism". Medicine, 45(9), 560-564, 2017.
  • Nath S, Basu B. Materials for Orthopedic Applications. Advanced Biomaterials, Hoboken, NJ, USA, John Wiley & Sons, Inc., 2010.
  • Batchelor A, Chandrasekaran M. Service Characteristics Of Biomedical Materials And Implants. London, UK, Imperial College Press, 2004.
  • Navarro M, Michiardi A, Castan O, Planell JA. "Biomaterials in orthopaedics". Journal of The Royal Society Interface, 5(27), 1137-58, 2008.
  • Charnley J. "Anchorage of the femoral head prosthesis to the shaft of the femur". The Journal of Bone and Joint Surgery. British Volume, 42-B(1), 28-30, 1960.
  • Rodriguez-Gonzalez FÁ. Introduction to biomaterials in orthopaedic surgery. Editors: Rodriguez-Gonzalez FÁ, Biomaterials In Orthopaedic Surgery, 1-10, Ohio, USA, ASM International, 2009.
  • Mahyudin F, Widhiyanto L, Hermawan H. Biomaterials in orthopaedics. Editors: Mahyudin F, Hermawan H. Biomaterials and Medical Devices A Perspective from an Emerging Country, 161-181, Cambridge, UK, Springer, 2016.
  • Patel B, Favaro G, Inam F, Reece MJ, Angadji A, Bonfield W, et al. "Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance". Materials Science and Engineering: C, 32(5), 1222-1229, 2012.
  • Zhao C, Zhou J, Mei Q, Ren F. "Microstructure and dry sliding wear behavior of ultrafine-grained Co-30 at% Cr alloy at room and elevated temperatures". Journal of Alloys and Compounds, 770, 276-284, 2019.
  • Okazaki Y, Gotoh E. "Comparison of metal release from various metallic biomaterials in vitro". Biomaterials, 26(1), 11-21, 2005.
  • Wapner KL. "Implications of metallic corrosion in total knee arthroplasty". Clinical Orthopaedics and Related Research, (271), 12-20, 1991.
  • McGregor DB, Baan RA, Partensky C, Rice JM, Wilbourn JD. "Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodies - A report of an IARC Monographs Programme Meeting". European Journal of Cancer, 36(3), 307-313, 2000.
  • Bahl S, Das S, Suwas S, Chatterjee K. "Engineering the next-generation tin containing β titanium alloys with high strength and low modulus for orthopedic applications". Journal of the Mechanical Behavior of Biomedical Materials, 78, 124-133, 2018.
  • Niinomi M, Nakai M, Hieda J. "Development of new metallic alloys for biomedical applications". Acta Biomaterialia, 8(11), 3888-3903, 2012.
  • Chen Q, Thouas GA. "Metallic implant biomaterials". Materials Science and Engineering R: Reports, 87, 1-57, 2015.
  • Pham V-H, Lee S-H, Li Y, Kim H-E, Shin K-H, Koh Y-H. "Utility of tantalum (Ta) coating to improve surface hardness in vitro bioactivity and biocompatibility of Co-Cr". Thin Solid Films, 536, 269-274, 2013.
  • Rupérez E, Manero JM, Riccardi K, Li Y, Aparicio C, Gil FJ. "Development of tantalum scaffold for orthopedic applications produced by space-holder method". Materials & Design, 83, 112-119, 2015.
  • Levine BR, Sporer S, Poggie RA, Della Valle CJ, Jacobs JJ. "Experimental and clinical performance of porous tantalum in orthopedic surgery". Biomaterials, 27(27), 4671-4681, 2006.
  • Zhao G, Li S, Chen X, Qu X, Chen R, Wu Y, et al. "Porous tantalum scaffold fabricated by gel casting based on 3D printing and electrolysis". Materials Letters, 239, 5-8, 2019.
  • Pradhan D, Wren AW, Misture ST, Mellott NP. "Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants". Materials Science and Engineering: C, 58, 918-926, 2016.
  • Ozan S, Lin J, Li Y, Wen C. "New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications". Journal of the Mechanical Behavior of Biomedical Materials, 75, 119-127, 2017.
  • La Grange DD, Goebbels N, Santana A, Heuberger R, Imwinkelried T, Eschbach L, et al. "Effect of niobium onto the tribological behavior of cathodic arc deposited Nb-Ti-N coatings". Wear, 368-369, 60-69, 2016.
  • Agarwal R, García AJ. "Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair". Advanced Drug Delivery Reviews, 94, 53-62, 2015.
  • Shalabi MM, Gortemaker A, Hof Ma. V., Jansen JA., Creugers NHJ. "Implant Surface Roughness and Bone Healing: a Systematic Review". Journal of Dental Research, 85(6), 496-500, 2006.
  • Anselme K, Bigerelle M. "Topography effects of pure titanium substrates on human osteoblast long-term adhesion". Acta Biomaterialia, 1(2), 211-222, 2005.
  • Keselowsky BG, Collard DM, Garcia AJ. "Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation". Proceedings of the National Academy of Sciences of the United States of America, 102(17), 5953-5957, 2005.
  • Keselowsky BG, Collard DM, García AJ. "Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion". Journal of Biomedical Materials Research Part A, 66A(2), 247-259, 2003.
  • Sul YT, Johansson CB, Jeong Y, Wennerberg A, Albrektsson T. "Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides". Clinical Oral Implants Research, 13(3), 252-259, 2002.
  • Rupp F, Scheideier L, Olshanska N, De Wild M, Wieland M, Geis-Gerstorfer J. "Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces". Journal of Biomedical Materials Research - Part A, 76(2), 323-334, 2006.
  • Søballe K. "Hydroxyapatite ceramic coating for bone implant fixation: Mechanical and histological studies in dogs". Acta Orthopaedica, 64(S255), 1-58, 1993.
  • Cook SD, Thomas KA, Delton JE, Volkman TK, Whitecloud TS, Key JF. "Hydroxylapatite coating of porous implants improves bone ingrowth and interface attachment strength". Journal of Biomedical Materials Research, 26(8), 989-1001, 1992.
  • Moroni A, Hoang-Kim A, Lio V, Giannini S. "Current augmentation fixation techniques for the osteoporotic patient". Scandinavian Journal of Surgery, 95(2), 103-109, 2006.
  • Barrère F, van der Valk CM, Meijer G, Dalmeijer RAJ, de Groot K, Layrolle P. "Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats". Journal of Biomedical Materials Research Part B: Applied Biomaterials, 67B(1), 655-665, 2003.
  • García AJ. "Get a grip: Integrins in cell-biomaterial interactions". Biomaterials, 26(36), 7525-7529, 2005.
  • Macdonald ML, Samuel RE, Shah NJ, Padera RF, Beben YM, Hammond PT. "Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants". Biomaterials, 32(5), 1446-1453, 2011.
  • Abtahi J, Tengvall P, Aspenberg P. "A bisphosphonate-coating improves the fixation of metal implants in human bone. A randomized trial of dental implants". Bone, 50(5), 1148-1151, 2012.
  • Pauly S, Luttosch F, Morawski M, Haas NP, Schmidmaier G, Wildemann B. "Simvastatin locally applied from a biodegradable coating of osteosynthetic implants improves fracture healing comparable to BMP-2 application". Bone, 45(3), 505-511, 2009.
  • Choi J, Konno T, Takai M, Ishihara K. "Controlled drug release from multilayered phospholipid polymer hydrogel on titanium alloy surface". Biomaterials, 30(28), 5201-5208, 2009.
  • Song W, Yu X, Markel DC, Shi T, Ren W. "Coaxial PCL/PVA electrospun nanofibers: Osseointegration enhancer and controlled drug release device". Biofabrication, 5(3) 2013.
  • Shi D, Wen X. Bioactive Ceramics Structure, Synthesis and Mechanical Properties. Editor: Shi D. Introduction to Biomaterials, 13-26, Beijing, China, Tsinghua University Press, 2005.
  • Kurtz S. PEEK Biomaterials Handbook. 1st ed. Oxford, USA, Elsevier, 2012.
  • Williams DF, McNamara A, Turner RM. "Potential of polyetheretherketone (PEEK) and carbon-fibre-reinforced PEEK in medical applications". Journal of Materials Science Letters, 6(2), 188-190, 1987.
  • Kurtz SM, Devine JN. "PEEK biomaterials in trauma, orthopedic, and spinal implants". Biomaterials, 28(32), 4845-4869, 2007.
  • Skinner H. "Composite Technology for Total Hip Arthroplasty". Clinical Orthopaedics and Related Research, 235, 224-236, 1988.
  • Liao K. "Performance characterization and modeling of a composite hip prosthesis". Experimental Techniques, 18(5), 33-38, 1994.
  • Maharaj G, Jamison R. "Interoperative impact: characterization and laboratory simulation on composite hip prostheses". Composite Materials for Implant Applications in the Human Body: Characterization and Testing, 98-108, 1993.
  • Kelsey DJ, Springer GS, Goodman SB. "Composite implant for bone replacement". Journal of Composite Materials, 31(16), 1593-1632, 1997.
  • Corvelli AA, Biermann PJ, Roberts JC. "Design, analysis, and fabrication of a composite segmental bone replacement implant". Journal of Advanced Materials, 28(3), 2-7, 1997.
  • Toth JM, Wang M, Estes BT, Scifert JL, Seim HB, Turner AS. "Polyetheretherketone as a biomaterial for spinal applications". Biomaterials, 27(3), 324-334, 2006.
  • Brantigan JW, Neidre A, Toohey JS. "The Lumbar I/F Cage for posterior lumbar interbody fusion with the variable screw placement system: 10-year results of a food and drug administration clinical trial". Spine Journal, 4(6), 681-688, 2004.
  • Akhavan S, Matthiesen MM, Schulte L, Penoyar T, Kraay MJ, Rimnac CM, et al. "Clinical and histologic results related to a low-modulus composite total hip replacement stem". Journal of Bone and Joint Surgery - Series A, 88(6), 1308-1314, 2006.
  • Glassman A, Crowninshield R, Schenck R, Herberts P. "A low stiffness composite biologically fixed prosthesis". Clinical Orthopaedics and Related Research, 393, 128-136, 2001.
  • Kärrholm J, Anderberg C, Snorrason F, Thanner J, Langeland N, Malchau H, et al. "Evaluation of a femoral stem with reduced stiffness. A randomized study with use of radiostereometry and bone densitometry". The Journal of Bone and Joint Surgery-American Volume, 84(9), 1651-1658, 2002.
  • Brantigan JW, Steffee AD, Lewis ML, Quinn LM, Persenaire JM. "Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system: two-year results from a food and drug administration investigational device exemption clinical trial". Spine, 25(11), 1437-1446, 2000.
  • Chung DDL. Composite Materials: Functional Materials for Modern Technologies. 2002.
  • Li X, Chu C, Chu PK. "Effects of external stress on biodegradable orthopedic materials: a review". Bioactive Materials, 1(1), 77-84, 2016.
  • Tan L, Yu X, Wan P, Yang K. "Biodegradable materials for bone repairs: a review". Journal of Materials Science & Technology, 29(6), 503-513, 2013.
  • Li N, Zheng Y. "Novel magnesium alloys developed for biomedical application: a review". Journal of Materials Science & Technology, 29(6), 489-502, 2013.
  • Witte F. "The history of biodegradable magnesium implants: A review". Acta Biomaterialia, 6(5), 1680-1692, 2010.
  • Staiger MP, Pietak AM, Huadmai J, Dias G. "Magnesium and its alloys as orthopedic biomaterials: a review". Biomaterials, 27(9), 1728-1734, 2006.
  • Tian L, Tang N, Ngai T, Wu C, Ruan Y, Huang L, et al. "Hybrid fracture fixation systems developed for orthopaedic applications: a general review". Journal of Orthopaedic Translation, 16, 1-13, 2019.
  • Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Filho RM. "Poly-lactic acid synthesis for application in biomedical devices-a review". Biotechnology Advances, 30(1), 321-328, 2012.
  • Wen X, Tresco PA. "Fabrication and characterization of permeable degradable poly(dl-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels". Biomaterials, 27(20), 3800-3809, 2006.
  • Shin H, Jo S, Mikos AG. "Biomimetic materials for tissue engineering". Biomaterials, 24(24), 4353-4364, 2003.
  • Nabiyouni M, Brückner T, Zhou H, Gbureck U, Bhaduri SB. "Magnesium-based bioceramics in orthopedic applications". Acta Biomaterialia, 66, 23-43, 2018.
  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. "Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering". Biomaterials, 27(18), 3413-3431, 2006.
  • Athanasiou KA, Niederauer GG, Agrawal CM. "Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers". Biomaterials, 17(2), 93-102, 1996.
  • Yao Y, Liu S, Swain MV, Zhang X, Zhao K, Jian Y. "Effects of acid-alkali treatment on bioactivity and osteoinduction of porous titanium: An in vitro study". Materials Science and Engineering: C, 94, 200-210, 2019.
  • Camargo WA, Takemoto S, Hoekstra JW, Leeuwenburgh SCG, Jansen JA, van den Beucken JJJP, et al. "Effect of surface alkali-based treatment of titanium implants on ability to promote in vitro mineralization and in vivo bone formation". Acta Biomaterialia, 57, 511-523, 2017.
  • Khodaei M, Hossein Kelishadi S. "The effect of different oxidizing ions on hydrogen peroxide treatment of titanium dental implant". Surface and Coatings Technology, 353, 158-162, 2018.
  • Karthega M, Nagarajan S, Rajendran N. "In vitro studies of hydrogen peroxide treated titanium for biomedical applications". Electrochimica Acta, 55(6), 2201-2209, 2010.
  • Vilardell AM, Cinca N, Garcia-Giralt N, Müller C, Dosta S, Sarret M, et al. "In-vitro study of hierarchical structures: Anodic oxidation and alkaline treatments onto highly rough titanium cold gas spray coatings for biomedical applications". Materials Science and Engineering: C, 91, 589-596, 2018.
  • Alves AC, Wenger F, Ponthiaux P, Celis J-P, Pinto AM, Rocha LA, et al. "Corrosion mechanisms in titanium oxide-based films produced by anodic treatment". Electrochimica Acta, 234, 16-27, 2017.
  • Catauro M, Bollino F, Papale F. "Surface modifications of titanium implants by coating with bioactive and biocompatible poly (ε-caprolactone)/SiO2 hybrids synthesized via sol-gel". Arabian Journal of Chemistry, 11(7), 1126-1133, 2018.
  • Domínguez-Trujillo C, Peón E, Chicardi E, Pérez H, Rodríguez-Ortiz JA, Pavón JJ, et al. "Sol-gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications". Surface and Coatings Technology, 333, 158-162, 2018.
  • Catauro M, Bollino F, Papale F, Giovanardi R, Veronesi P. "Corrosion behavior and mechanical properties of bioactive sol-gel coatings on titanium implants". Materials Science and Engineering: C, 43, 375-382, 2014.
  • Catauro M, Bollino F, Papale F, Ferrara C, Mustarelli P. "Silica-polyethylene glycol hybrids synthesized by sol-gel: Biocompatibility improvement of titanium implants by coating". Materials Science and Engineering: C, 55, 118-125, 2015.
  • Batebi K, Abbasi Khazaei B, Afshar A. "Characterization of sol-gel derived silver/fluor-hydroxyapatite composite coatings on titanium substrate". Surface and Coatings Technology, 352, 522-528, 2018.
  • Cotolan N, Rak M, Bele M, Cör A, Muresan LM, Milošev I. "Sol-gel synthesis, characterization and properties of TiO2 and Ag-TiO2 coatings on titanium substrate". Surface and Coatings Technology, 307, 790-799, 2016.
  • Catauro M, Papale F, Bollino F. "Characterization and biological properties of TiO2/PCL hybrid layers prepared via sol-gel dip coating for surface modification of titanium implants". Journal of Non-Crystalline Solids, 415, 9-15, 2015.
  • Yazıcı M, Çomaklı O, Yetim T, Yetim AF, Çelik A. "Effect of sol aging time on the wear properties of TiO2-SiO2 composite films prepared by a sol-gel method". Tribology International, 104, 175-182, 2016.
  • Choudhury P, Agrawal DC. "Sol-gel derived hydroxyapatite coatings on titanium substrates". Surface and Coatings Technology, 206(2-3), 360-365, 2011.
  • Usinskas P, Stankeviciute Z, Beganskiene A, Kareiva A. "Sol-gel derived porous and hydrophilic calcium hydroxyapatite coating on modified titanium substrate". Surface and Coatings Technology, 307, 935-940, 2016.
  • Shunzhi Y, Zhonghai L, Liwei H, Yantao Z, Tao F. "Biocompatible MgO film on titanium substrate prepared by sol-gel method". Rare Metal Materials and Engineering, 47(9), 2663-2667, 2018.
  • Grögler T, Zeiler E, Hörner A, Rosiwal SM, Singer RF. "Microwave-plasma-CVD of diamond coatings onto titanium and titanium alloys". Surface and Coatings Technology, 98(1-3), 1079-1091, 1998.
  • Zhu Y, Wang W, Jia X, Akasaka T, Liao S, Watari F. "Deposition of TiC film on titanium for abrasion resistant implant material by ion-enhanced triode plasma CVD". Applied Surface Science, 262, 156-158, 2012.
  • Liu YC, Lin GS, Wang JY, Cheng CS, Yang YC, Lee BS, et al. "Synthesis and characterization of porous hydroxyapatite coatings deposited on titanium by flame spraying". Surface and Coatings Technology, 349, 357-363, 2018.
  • Gkomoza P, Lampropoulos GS, Vardavoulias M, Pantelis DI, Karakizis PN, Sarafoglou C. "Microstructural investigation of porous titanium coatings, produced by thermal spraying techniques, using plasma atomization and hydride-dehydride powders, for orthopedic implants". Surface and Coatings Technology, 357, 947-956, 2019.
  • Hermann-Muñoz JA, Rincón-López JA, Clavijo-Mejía GA, Giraldo-Betancur AL, Alvarado-Orozco JM, De Vizcaya-Ruiz A, et al. "Influence of HVOF parameters on HAp coating generation: An integrated approach using process maps". Surface and Coatings Technology, 358, 299-307, 2019.
  • Kawakita J, Kuroda S, Fukushima T, Katanoda H, Matsuo K, Fukanuma H. "Dense titanium coatings by modified HVOF spraying". Surface and Coatings Technology, 201(3-4), 1250-1255, 2006.
  • Utu ID, Marginean G, Hulka I, Serban VA, Cristea D. "Properties of the thermally sprayed Al2O3-TiO2 coatings deposited on titanium substrate". International Journal of Refractory Metals and Hard Materials, 51, 118-123, 2015.
  • Jafari H, Emami S, Mahmoudi Y. "Numerical investigation of dual-stage high velocity oxy-fuel (HVOF) thermal spray process: A study on nozzle geometrical parameters". Applied Thermal Engineering, 111, 745-758, 2017.
  • Lima RS, Khor KA, Li H, Cheang P, Marple BR. "HVOF spraying of nanostructured hydroxyapatite for biomedical applications". Materials Science and Engineering: A, 396(1-2), 181-187, 2005.
  • Gryshkov O, Klyui NI, Temchenko VP, Kyselov VS, Chatterjee A, Belyaev AE, et al. "Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants". Materials Science and Engineering: C, 68, 143-152, 2016.
  • Marin E, Offoiach R, Regis M, Fusi S, Lanzutti A, Fedrizzi L. "Diffusive thermal treatments combined with PVD coatings for tribological protection of titanium alloys". Materials & Design, 89, 314-322, 2016.
  • Probst J, Gbureck U, Thull R. "Binary nitride and oxynitride PVD coatings on titanium for biomedical applications". Surface and Coatings Technology, 148(2-3), 226-233, 2001.
  • Veronesi F, Giavaresi G, Fini M, Longo G, Ioannidu CA, Scotto d’Abusco A, et al. "Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon". Materials Science and Engineering: C, 70, 264-271, 2017.
  • Song DH, Uhm SH, Kim S-E, Kwon JS, Han JG, Kim KN. "Synthesis of titanium oxide thin films containing antibacterial silver nanoparticles by a reactive magnetron co-sputtering system for application in biomedical implants". Materials Research Bulletin, 47(10), 2994-2998, 2012.
  • Qi J, Yang Y, Zhou M, Chen Z, Chen K. "Effect of transition layer on the performance of hydroxyapatite/titanium nitride coating developed on Ti-6Al-4V alloy by magnetron sputtering". Ceramics International, 45(4), 4863-4869, 2019.
  • Kang S, Tu W, Han J, Li Z, Cheng Y. "A significant improvement of the wear resistance of Ti6Al4V alloy by a combined method of magnetron sputtering and plasma electrolytic oxidation (PEO)". Surface and Coatings Technology, 358, 879-890, 2019.
  • Wu WY, Chan MY, Hsu YH, Chen GZ, Liao SC, Lee CH. "Bioapplication of TiN thin films deposited using high power impulse magnetron sputtering". Surface and Coatings Technology, 362, 167-175, 2019.
  • Rautray TR, Narayanan R, Kim K-H. "Ion implantation of titanium based biomaterials". Progress in Materials Science, 56(8), 1137-1177, 2011.
  • Matos AO, Ricomini-Filho AP, Beline T, Ogawa ES, Costa-Oliveira BE, de Almeida AB, et al. "Three-species biofilm model onto plasma-treated titanium implant surface". Colloids and Surfaces B: Biointerfaces, 152, 354-366, 2017.
  • Wierzchoń T, Czarnowska E, Grzonka J, Sowińska A, Tarnowski M, Kamiński J, et al. "Glow discharge assisted oxynitriding process of titanium for medical application". Applied Surface Science, 334, 74-79, 2015.
  • Ma A, Liu D, Tang C, Zhang X, Liu C. "Influence of glow plasma Co-based alloying layer on sliding wear and fretting wear resistance of titanium alloy". Tribology International, 125, 85-94, 2018.
  • Huang CF, Cheng HC, Liu CM, Chen CC, Ou KL. "Microstructure and phase transition of biocompatible titanium oxide film on titanium by plasma discharging". Journal of Alloys and Compounds, 476(1-2), 683-688, 2009.
  • Affatato S, Grillini L, Battaglia S, Taddei P, Modena E, Sudanese A. "Does knee implant size affect wear variability?". Tribology International, 66, 174-181, 2013.
  • Uwais ZA, Hussein MA, Samad MA, Al-Aqeeli N. "Surface Modification of Metallic Biomaterials for Better Tribological Properties: A Review". Arabian Journal for Science and Engineering, 42(11), 4493-4512, 2017.
  • Hussein MA, Mohammed AS, Al-Aqeeli N. "Wear Characteristics of Metallic Biomaterials: A Review". Materials, 8(5), 2749-2768, 2015.
  • Lohmann CH, Hameister R, Singh G. "Allergies in orthopaedic and trauma surgery". Orthopaedics & Traumatology: Surgery & Research, 103(1), 75-81, 2017.
  • Zhang T, Harrison NM, McDonnell PF, McHugh PE, Leen SB. "A finite element methodology for wear-fatigue analysis for modular hip implants". Tribology International, 65, 113-127, 2013.
  • Ginebra MP, Montufar EB. Cements as Bone Repair Materials. Editors: Pawelec KM, Planell JA. Bone Repair Biomaterials. 2nd Edition, 233-271, Cambridge, UK, Woodhead Publishing, 2019.
  • Teoh SH. "Fatigue of biomaterials: A review". International Journal of Fatigue, 22(10), 825-837, 2000.
  • Niinomi M. "Fatigue characteristics of metallic biomaterials". International Journal of Fatigue, 29(6), 992-1000, 2007.
  • Vadiraj A, Kamaraj M. "Effect of surface treatments on fretting fatigue damage of biomedical titanium alloys". Tribology International, 40(1), 82-88, 2007.
  • Fleck C, Eifler D. "Corrosion, fatigue and corrosion fatigue behaviour of metal implant materials, especially titanium alloys". International Journal of Fatigue, 32(6), 929-935, 2010.
  • Giori NJ. "Unexpected finding of a fractured metal prosthetic femoral head in a nonmodular implant during revision total hip arthroplasty". Journal of Arthroplasty, 25(4) 2010.
  • Gervais B, Vadean A, Raison M, Brochu M. "Failure analysis of a 316L stainless steel femoral orthopedic implant". Case Studies in Engineering Failure Analysis, 5-6, 30-38, 2016.
  • Zhang QH, Cossey A, Tong J. "Stress shielding in periprosthetic bone following a total knee replacement: Effects of implant material, design and alignment". Medical Engineering & Physics, 38(12), 1481-1488, 2016.
  • Sumner DR. "Long-term implant fixation and stress-shielding in total hip replacement". Journal of Biomechanics, 48(5), 797-800, 2015.
  • Barua E, Das S, Deoghare AB. "Development of computational Tibia model to investigate stress shielding effect at healing stages". Materials Today: Proceedings, 5(5), 13267-13275, 2018.
  • Zhang QH, Cossey A, Tong J. "Stress shielding in bone of a bone-cement interface". Medical Engineering & Physics, 38(4), 423-426, 2016.
  • Denard PJ, Raiss P, Gobezie R, Edwards TB, Lederman E. "Stress shielding of the humerus in press-fit anatomic shoulder arthroplasty: review and recommendations for evaluation". Journal of Shoulder and Elbow Surgery, 27(6), 1139-1147, 2018.
  • Shi L, Shi L, Wang L, Duan Y, Lei W, Wang Z, et al. "The Improved Biological Performance of a Novel Low Elastic Modulus Implant". PLoS one, 8(2), 4-9, 2013.
  • Rahimizadeh A, Nourmohammadi Z, Arabnejad S, Tanzer M, Pasini D. "Porous architected biomaterial for a tibial-knee implant with minimum bone resorption and bone-implant interface micromotion". Journal of the Mechanical Behavior of Biomedical Materials, 78(November 2017), 465-479, 2018.
  • Arabnejad S, Johnston B, Tanzer M, Pasini D. "Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty". Journal of Orthopaedic Research, 35(8), 1774-1783, 2017.
There are 157 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Review Article
Authors

Ali Tekin Güner This is me

Cemal Meran This is me

Publication Date February 20, 2020
Published in Issue Year 2020 Volume: 26 Issue: 1

Cite

APA Güner, A. T., & Meran, C. (2020). Ortopedik implantlarda kullanılan biyomalzemeler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 54-67.
AMA Güner AT, Meran C. Ortopedik implantlarda kullanılan biyomalzemeler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. February 2020;26(1):54-67.
Chicago Güner, Ali Tekin, and Cemal Meran. “Ortopedik Implantlarda kullanılan Biyomalzemeler”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26, no. 1 (February 2020): 54-67.
EndNote Güner AT, Meran C (February 1, 2020) Ortopedik implantlarda kullanılan biyomalzemeler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26 1 54–67.
IEEE A. T. Güner and C. Meran, “Ortopedik implantlarda kullanılan biyomalzemeler”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 26, no. 1, pp. 54–67, 2020.
ISNAD Güner, Ali Tekin - Meran, Cemal. “Ortopedik Implantlarda kullanılan Biyomalzemeler”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26/1 (February 2020), 54-67.
JAMA Güner AT, Meran C. Ortopedik implantlarda kullanılan biyomalzemeler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26:54–67.
MLA Güner, Ali Tekin and Cemal Meran. “Ortopedik Implantlarda kullanılan Biyomalzemeler”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 26, no. 1, 2020, pp. 54-67.
Vancouver Güner AT, Meran C. Ortopedik implantlarda kullanılan biyomalzemeler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26(1):54-67.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.