Araştırma Makalesi
BibTex RIS Kaynak Göster

EN50588-1’e uygun Si-Fe nüveli dağitim transformatörü tasariminin ekonomik ve teknik açidan değerlendirilmesi

Yıl 2020, Cilt: 26 Sayı: 2, 295 - 300, 07.04.2020

Öz

Dağıtım transformatörlerinde meydana gelen güç kayıpları elektrik şebekesindeki toplam kayıpların büyük kısmını oluşturmaktadır. EN50588-1 standardı ile yüksek verimli transformatörlerde izin verilen en yüksek boşta ve yükte güç kayıpları yeniden düzenlenmiştir. Elektriksel kısıtlara ek olarak, transformatör üreticileri için maliyet parametresi önemli de bir kriter olmaktadır. Bu çalışmada, EN50588-1 standardında belirtilen kayıp sınıflarındaki dağıtım transformatörlerinin Si-Fe nüve malzemeleri ile üretim imkanı Teknik ve ekonomik yönden değerlendirilmektedir. Bu amaçla, üç ayrı sınıftaki onbir farklı Si-Fe nüve malzemesi kullanılarak yirmi farklı elektriksel tasarım gerçekleştirilmiş olup, bu tasarımların üretilebilirliği teknik ve ekonomik açıdan değerlendirilmiştir. Elde edilen sonuçlar, uygun üretim yöntemleri ile A0 ve AA0 kayıp sınıflarındaki transformatörlerin Si-Fe malzemeler ile üretilebileceğini, fakat AAA0 kayıp sınıfındaki dağıtım transformatörü üretimi için amorf malzeme kullanımının zorunlu olduğunu ortaya koymaktadır.

Kaynakça

  • Georgilakis PS. “Differential evolution solution to transformer no-load loss reduction problem”. IET Generation, Transmission & Distribution, 3(10), 960-969, 2009.
  • Haidar AMA, Al-Dabbagh M. “The influences of T-joint core design on no-load losses in transformers”. IEEE Potentials, 32(3), 40-48, 2013.
  • Binns DF, Crompton AB, Jabensari A. “Economic design of a 50 kVA distribution transformer Part 2: Effect of different core steels and loss capitalisations”. IEE Proceedings, 133(7), 451-456, 1986.
  • Nakamura M, Hirose K, Iuchi T, Yamaguchi S, Ohya Y. “Characteristics of laser irradiated grain oriented silicon steel”. IEEE Transactions on Magnetics, 18(6), 1508-1510, 1982.
  • Ponnaluri SV, Cherukuri R, Molian PA. “Core loss reduction in grain-oriented silicon steels by excimer laser scribing Part I: experimental work”. Journal of Materials Processing Technology, 112, 199-204, 2001.
  • Ng HW, Hasegawa R. Lee AC. Lowdermilk LA. “Amorphous alloy core distribution transformers”. Proceedings of the IEEE, 79(11), 1608-1623, 1991.
  • Najgebauer M, Chwastek K, Szczyglowski J. “Energy efficient distribution transformers”. Przeglad Elektrotechniczny, 87(2), 111-114, 2011.
  • Targosz R. “The Potential for Global Energy Savings From High Efficiency Distribution Transformers”. European Copper Institute, Brussels, Belgium, Technical Report, 2005.
  • Işık F, Uyaroğlu Y. “Amorphous core transformers efficiency analysis in Turkish electrical distribution system”. Turkish Journal of Electrical Engineering & Computer Sciences, 23(6), 1523-1535, 2015.
  • Kurita N, Nishimizu A, Kobayashi C, Tanaka Y, Yamagishi A, Ogi M, Takahashi K, Kuwabara M. “Magnetic properties of simultaneously excited amorphous and silicon steel hybrid cores for higher efficiency distribution transformers”. IEEE Transactions on Magnetics, 54(11), 1-4, 2018.
  • Freitag C, Leibfried T. “Mixed core design for power transformers to reduce core losses”. International Aegean Conference on Electrical Machines and Power Electronics, Brasov, Romania, 25-27 May 2017.
  • Adame SM, Vazquez EM, Galvan JCO, Perez RE. “Loss reduction by combining electrical steels in the core of power transformers”. International Transactions on Electrical Energy Systems, 26(8), 1737-1751, 2016.
  • Adame SM, Kefalas TD, Martinez SG, Rojas CP. “Electromagnetic finite element analysis of electrical steels combination in lamination core steps of single-phase distribution transformers”. IEEE International Autumn Meeting on Power, Electronics and Computing, Ixtapa, Mexico, 8-10 November 2017.
  • Kefalas TD, Kladas AG. “Reduction of cost and losses of transformers by using composite magnetic cores”. International Conference on Electrical Machines, Berlin, Germany, 2-5 September 2014.
  • Upadhyay G, Singh A. “FEM based No-load Loss Calculation of Triangular Wound Core Transformer”. IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, Delhi, India, 4-6 July 2016.
  • Kefalas TD, Kladas AG. “Development of distribution transformers assembled of composite wound cores”. IEEE Transactions on Magnetics, 48(2), 775-778, 2012.
  • Kefalas TD, Kladas AG. “Mixed Si-Fe wound cores five legged transformer: losses and flux distribution analysis”. IEEE Transactions on Magnetics, 48(4), 1609-1612, 2012.
  • Cinar MA, Alboyaci B, Sengul M. “Comparison of power loss and magnetic flux distribution in octagonal wound transformer core configurations”. Journal of Electrical Engineering and Technology, 9(4), 1290-1295, 2014.
  • Pfützner H, Shilyashki G, Hamberger P, Aigner M, Hofbauer F, Palkovits M, Trenner G, Gerstbuer E, Matkovic I, Galaboy V. “Automatic 3-D building factor analyses of a grain-oriented model transformer core”. IEEE Transactions on Magnetics, 50(4), 1-4, 2014.
  • Popescu M, Miller TJE, McGilp M, Ionel DM, Dellinger SJ, Heidemann RJ. “On the physical basis of power losses in laminated steel and minimum-effort modeling in an industrial design environment”. IEEE Industry Applications Annual Meeting, Louisiana, USA, 23-27 September 2007.
  • Broddefalk A, Lindenmo M. “Dependence of the power losses of a non-oriented 3% Si-steel on frequency and gauge”. Journal of Magnetism and Magnetic Materials, 304(2), 586-588, 2006.
  • Mthombeni TL, Pillay P. “Physical basis for the variation of lamination core loss coefficients as a function of frequency and flux density”. 32nd IEEE Annual Conference on Industrial Electronics, Paris, France, 6-10 November 2006.
  • AK Steel. “Selection of Electrical Steels for Magnetic Cores, Product Data Bulletin”. Ohio, USA, 1, 2007.
  • AK Steel. “TRAN-COR H Grain Oriented Electrical Steels, Product Data Bulletin”. Ohio, USA, 1, 2013.
  • CENELEC. “EN50588-1 Medium Power Transformers 50 Hz with Highest Voltage for Equipment not Exceeding 36 kV–Part 1: General Equipments, International Standard”. Brussels, Belgium, 2015.
  • AK Steel. “CARLITE Grain Oriented Electrical Steels, Product Data Bulletin”. Ohio, USA, 1, 2013.
  • CENELEC. “EN60076-1 Power Transformers-Part 1: General, International Standard”. Brussels, Belgium, 2011

Investigation of the economical and technical design feasibility of Si-Fe graded distribution transformers according to EN50588-1

Yıl 2020, Cilt: 26 Sayı: 2, 295 - 300, 07.04.2020

Öz

Medium power transformers are responsible of the great part of total power losses in the grid. With EN50588-1 regulation, no-load and load losses have strictly classified fo r high-efficient transformer designs. Manufacturers are currently focusing on obtaining the most efficient design with minimum cost. In this paper, manufacturing feasibilities of Si-Fe graded distribution transformers, considering the requirements of EN50588-1 regulation, are investigated. Eleven different steel types in three grades are evaluated using twenty different electrical designs. A prototype transformer was both simulated and experimentally tested to verify the results of design studies. Obtained results show that the manufacturing of A0 and AA0 class transformers are feasible using Si-Fe grades with suitable manufacturing methods. However, amorphous materials seem to be a mandatory choice for AAA0 class transformers in technical manner.

Kaynakça

  • Georgilakis PS. “Differential evolution solution to transformer no-load loss reduction problem”. IET Generation, Transmission & Distribution, 3(10), 960-969, 2009.
  • Haidar AMA, Al-Dabbagh M. “The influences of T-joint core design on no-load losses in transformers”. IEEE Potentials, 32(3), 40-48, 2013.
  • Binns DF, Crompton AB, Jabensari A. “Economic design of a 50 kVA distribution transformer Part 2: Effect of different core steels and loss capitalisations”. IEE Proceedings, 133(7), 451-456, 1986.
  • Nakamura M, Hirose K, Iuchi T, Yamaguchi S, Ohya Y. “Characteristics of laser irradiated grain oriented silicon steel”. IEEE Transactions on Magnetics, 18(6), 1508-1510, 1982.
  • Ponnaluri SV, Cherukuri R, Molian PA. “Core loss reduction in grain-oriented silicon steels by excimer laser scribing Part I: experimental work”. Journal of Materials Processing Technology, 112, 199-204, 2001.
  • Ng HW, Hasegawa R. Lee AC. Lowdermilk LA. “Amorphous alloy core distribution transformers”. Proceedings of the IEEE, 79(11), 1608-1623, 1991.
  • Najgebauer M, Chwastek K, Szczyglowski J. “Energy efficient distribution transformers”. Przeglad Elektrotechniczny, 87(2), 111-114, 2011.
  • Targosz R. “The Potential for Global Energy Savings From High Efficiency Distribution Transformers”. European Copper Institute, Brussels, Belgium, Technical Report, 2005.
  • Işık F, Uyaroğlu Y. “Amorphous core transformers efficiency analysis in Turkish electrical distribution system”. Turkish Journal of Electrical Engineering & Computer Sciences, 23(6), 1523-1535, 2015.
  • Kurita N, Nishimizu A, Kobayashi C, Tanaka Y, Yamagishi A, Ogi M, Takahashi K, Kuwabara M. “Magnetic properties of simultaneously excited amorphous and silicon steel hybrid cores for higher efficiency distribution transformers”. IEEE Transactions on Magnetics, 54(11), 1-4, 2018.
  • Freitag C, Leibfried T. “Mixed core design for power transformers to reduce core losses”. International Aegean Conference on Electrical Machines and Power Electronics, Brasov, Romania, 25-27 May 2017.
  • Adame SM, Vazquez EM, Galvan JCO, Perez RE. “Loss reduction by combining electrical steels in the core of power transformers”. International Transactions on Electrical Energy Systems, 26(8), 1737-1751, 2016.
  • Adame SM, Kefalas TD, Martinez SG, Rojas CP. “Electromagnetic finite element analysis of electrical steels combination in lamination core steps of single-phase distribution transformers”. IEEE International Autumn Meeting on Power, Electronics and Computing, Ixtapa, Mexico, 8-10 November 2017.
  • Kefalas TD, Kladas AG. “Reduction of cost and losses of transformers by using composite magnetic cores”. International Conference on Electrical Machines, Berlin, Germany, 2-5 September 2014.
  • Upadhyay G, Singh A. “FEM based No-load Loss Calculation of Triangular Wound Core Transformer”. IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, Delhi, India, 4-6 July 2016.
  • Kefalas TD, Kladas AG. “Development of distribution transformers assembled of composite wound cores”. IEEE Transactions on Magnetics, 48(2), 775-778, 2012.
  • Kefalas TD, Kladas AG. “Mixed Si-Fe wound cores five legged transformer: losses and flux distribution analysis”. IEEE Transactions on Magnetics, 48(4), 1609-1612, 2012.
  • Cinar MA, Alboyaci B, Sengul M. “Comparison of power loss and magnetic flux distribution in octagonal wound transformer core configurations”. Journal of Electrical Engineering and Technology, 9(4), 1290-1295, 2014.
  • Pfützner H, Shilyashki G, Hamberger P, Aigner M, Hofbauer F, Palkovits M, Trenner G, Gerstbuer E, Matkovic I, Galaboy V. “Automatic 3-D building factor analyses of a grain-oriented model transformer core”. IEEE Transactions on Magnetics, 50(4), 1-4, 2014.
  • Popescu M, Miller TJE, McGilp M, Ionel DM, Dellinger SJ, Heidemann RJ. “On the physical basis of power losses in laminated steel and minimum-effort modeling in an industrial design environment”. IEEE Industry Applications Annual Meeting, Louisiana, USA, 23-27 September 2007.
  • Broddefalk A, Lindenmo M. “Dependence of the power losses of a non-oriented 3% Si-steel on frequency and gauge”. Journal of Magnetism and Magnetic Materials, 304(2), 586-588, 2006.
  • Mthombeni TL, Pillay P. “Physical basis for the variation of lamination core loss coefficients as a function of frequency and flux density”. 32nd IEEE Annual Conference on Industrial Electronics, Paris, France, 6-10 November 2006.
  • AK Steel. “Selection of Electrical Steels for Magnetic Cores, Product Data Bulletin”. Ohio, USA, 1, 2007.
  • AK Steel. “TRAN-COR H Grain Oriented Electrical Steels, Product Data Bulletin”. Ohio, USA, 1, 2013.
  • CENELEC. “EN50588-1 Medium Power Transformers 50 Hz with Highest Voltage for Equipment not Exceeding 36 kV–Part 1: General Equipments, International Standard”. Brussels, Belgium, 2015.
  • AK Steel. “CARLITE Grain Oriented Electrical Steels, Product Data Bulletin”. Ohio, USA, 1, 2013.
  • CENELEC. “EN60076-1 Power Transformers-Part 1: General, International Standard”. Brussels, Belgium, 2011
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makale
Yazarlar

Mehmet Aytaç Çınar Bu kişi benim

Yayımlanma Tarihi 7 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 26 Sayı: 2

Kaynak Göster

APA Çınar, M. A. (2020). Investigation of the economical and technical design feasibility of Si-Fe graded distribution transformers according to EN50588-1. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(2), 295-300.
AMA Çınar MA. Investigation of the economical and technical design feasibility of Si-Fe graded distribution transformers according to EN50588-1. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Nisan 2020;26(2):295-300.
Chicago Çınar, Mehmet Aytaç. “Investigation of the Economical and Technical Design Feasibility of Si-Fe Graded Distribution Transformers According to EN50588-1”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26, sy. 2 (Nisan 2020): 295-300.
EndNote Çınar MA (01 Nisan 2020) Investigation of the economical and technical design feasibility of Si-Fe graded distribution transformers according to EN50588-1. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26 2 295–300.
IEEE M. A. Çınar, “Investigation of the economical and technical design feasibility of Si-Fe graded distribution transformers according to EN50588-1”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 26, sy. 2, ss. 295–300, 2020.
ISNAD Çınar, Mehmet Aytaç. “Investigation of the Economical and Technical Design Feasibility of Si-Fe Graded Distribution Transformers According to EN50588-1”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26/2 (Nisan 2020), 295-300.
JAMA Çınar MA. Investigation of the economical and technical design feasibility of Si-Fe graded distribution transformers according to EN50588-1. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26:295–300.
MLA Çınar, Mehmet Aytaç. “Investigation of the Economical and Technical Design Feasibility of Si-Fe Graded Distribution Transformers According to EN50588-1”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 26, sy. 2, 2020, ss. 295-00.
Vancouver Çınar MA. Investigation of the economical and technical design feasibility of Si-Fe graded distribution transformers according to EN50588-1. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26(2):295-300.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.