Research Article
BibTex RIS Cite

Sualtı doğalgaz boru hatlarındaki sızıntıların konumlandırılmasının zaman ve frekans seçici akustik kanalda incelenmesi

Year 2020, Volume: 26 Issue: 5, 908 - 915, 23.10.2020

Abstract

Önemli bir enerji kaynağı olan doğalgaz genelde sualtından da geçen doğalgaz boru hatları vasıtasıyla taşınmaktadır. Sualtı doğalgaz boru hatları korozyon ve gemi, balıkçılık faaliyetleri başta olmak üzere çeşitli nedenlerden dolayı delinebilir. Bu yüzden, sızıntıların algılanması ve konumlandırılması enerji güvenirliğinin sağlanmasında ve doğal yaşamın korunmasında önemli bir role sahiptir. Bu çalışmada, sualtı doğalgaz boru hatlarındaki sızıntıların konumlandırılması için yeni bir yöntem olarak sinyal gücü tabanlı eğri uydurma yöntemi önerilmiştir. Önerilen yöntemin performansı, gerçek bir sualtı doğalgaz boru hattının parametrelerinin ve zamanla değişen (hareketli deniz yüzeyi, sualtı akıntıları vb. nedeniyle) çok yollu ikili seçici sualtı akustik kanalının kullanıldığı benzetim çalışmalarıyla analiz edilmiştir. Nümerik sonuçlar, oldukça gerçekçi olan bu zamanla değişen çok yollu sualtı akustik kanalında sızıntıların kilometrelerce uzaktan deniz dalga yüksekliği ve ortam gürültüsüne bağlı olarak düşük hatalarla konumlandırılabileceği gösterilmiştir.

References

  • [1] United Nations. The First Global Integrated Marine Assessment: World Ocean Assessment. 1th ed. Cambridge, UK, Cambridge University Press, 2017.
  • [2] Barbagelata A, Barbagelata, L. “New acoustic leak system saves Money offshore”. Pipeline Gas Journal, 231(11), 42-44, 2004.
  • [3] Det Norske Veritas. “Selection and Use of Subsea Leak Detection Systems”. Recommended Practice Det Norske Veritas DNV-RP-F302, Veritasveien, Norway, 2010.
  • [4] Mahmutoglu Y, Turk K. “A passive acoustic based system to locate leak hole in underwater natural gas pipelines”. Digital Signal Processing, 76, 59-65, 2018.
  • [5] Thodi P, Paulin M, DeGeer D, Lanan G. “Offshore pipeline leak detection technologies for arctic applications”. Subsea and Arctic Leak Detection Symposium, Houston, USA, 5-6 December 2012.
  • [6] Zhang J. “Designing a cost effective and reliable pipeline leak detection system”. Pipeline Reliability Conference, Houston, USA, 19-22 November 1996.
  • [7] Murvay P, Silea I. “A survey on gas leak detection and localization techniques”. Journal of Loss Prevention in the Process Industries, 25(6), 966-973, 2012.
  • [8] Mahmutoglu Y, Turk K. “Remote leak hole localization for underwater natural gas pipelines”. 40th Telecommunications and Signal Processing Conference, Barcelona, Spain, 5-7 July 2017.
  • [9] Mahmutoglu Y, Turk K. “Localization of leakages in underwater natural gas pipelines for multipath propagation”. 26th Signal Processing and Communications Application Conference, İzmir, Turkey, 2-5 May 2018.
  • [10] Qarabaqi P, Stojanovic M. “Statistical Characterization and Computationally Efficient Modeling of a Class of Underwater Acoustic Communication Channels”. IEEE Journal Oceanic Engineering, 38(4), 701-717, 2013.
  • [11] Bhuiyan MZH, Lohan ES. “Advanced multipath mitigation techniques for satellite-based positioning applications”. International Journal of Navigation and Observation, 2010, 1-15, 2010.
  • [12] Tamazin M, Noureldin A, Korenberg MJ, Kamel AM. “A New High-Resolution GPS Multipath Mitigation Technique Using Fast Orthogonal Search”. Journal of Navigation, 69, 794-814, 2016.
  • [13] Marx M, Kokozinski R, Müller HC. “Time Synchronization for Real Time Localization Systems with Multi Path Mitigation”. IEEE MTT-S International Microwave Workshop on Wireless Sensing, Local Positioning and RFID, Cavtat, Croatia, 24-25 September 2009.
  • [14] Aram M, El-Rabbany A, Krishnan S, Anpalagan A. “Single Frequency Multipath Mitigation Based On Wavelet Analysis”. Journal of Navigation, 60, 281-290, 2007.
  • [15] Ladha C, Sharif BS, Tsimenidis CC. “Mitigating propagation errors for indoor positioning in wireless sensor networks”. IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS), Pisa, Italy, 8-11 October 2007.
  • [16] Lazaro A, Girbau D, Moravek P, Villarino R. “A study on localization in wireless sensor networks using frequency diversity for mitigating multipath effects”. Elektronika Ir Elektrotechnika, 19(13), 82-87, 2013.
  • [17] Li-Jun C, Xiang G, Liang A. “Multipath passive localization in shallow water channel”. Journal of Nanjing University (Natural Sciences), 48(5), 609-615, 2012.
  • [18] Porter MB, Bucker HP. “Gaussian beam tracing for computing ocean acoustic fields”. Journal of Acoustical Society of America, 82(4), 1348-1359, 1987.
  • [19] Heitsenrether RM, Badiey M. “Modeling acoustic signal fluctuations induced by sea surface roughness”. Proceedings of High Frequency Ocean Acoustics Conference (AIP Conference), California, USA, 1-5 March 2004.
  • [20] Peterson JC, Porter MB. “Ray/beam tracing for modeling the effects of ocean and platform dynamics”. IEEE Journal of Oceanic Engineering, 38(4), 655-665, 2013.
  • [21] Qarabaqi P, Stojanovic M. “Statistical modeling of a shallow water acoustic communication channel”. Proceedings of 3rd underwater acoustic measurements conference, Nafplion, Greece, 21-26 June 2009.
  • [22] Radosevic A, Proakis J, Stojanovic M. “Statistical characterization and capacity of shallow water acoustic channels”. Proceedings of IEEE Oceans Europe Conference, Bremen, Germany, 11-14 May 2009.
  • [23] Socheleau F, Passerieux J, Laot C. “Characterisation of time-varying underwater acoustic communication channel with application to channel capacity”. Proceedings of 3rd Underwater Acoustic Measurements Conference, Nafplion, Greece, 21-26 June 2009.
  • [24] Galvin R, Coats REW. “A stochastic underwater acoustic channel model”. Proceedings of MTS/IEEE OCEANS Conference, Florida, USA, 23-26 September 1996.
  • [25] Qarabaqi P, Stojanovic M. “Modeling the large scale transmission loss in underwater acoustic channels”. Proceedings of 49th Annual Allerton Conference on Communication, Control and Computing, Illinois, USA, 28-30 September 2011.
  • [26] Tomasi B, Casari P, Badia L, Zorzi M. “A study of incremental redundancy hybrid ARQ over Markov channel models derived from experimental data”. Proceedings of the 5th ACM International Workshop on UnderWater Networks, Massachusetts, USA, September 30-October 10 2010.
  • [27] Wang WB, Yang TC. “High-frequency channel characterization for-ary frequency-shift-keying underwater acoustic communications”. Journal of Acoustical Society of America, 120(5), 2615-2626, 2006.
  • [28] Zhang J, Cross J, Zheng YR. “Statistical channel modeling of wireless shallow water acoustic communications from experiment data”. Proceedings Military Communications Conference, California, USA, 31 October-3 November 2010.
  • [29] Kari D, Marivani I, Khan F, Sayin MO, Kozat SS. “Robust adaptive algorithms for underwater acoustic channel estimation and their performance analysis”. Digital Signal Processing, 68, 57-68, 2017.
  • [30] Pedrosa P, Dinis R, Nunes F. “Joint equalization and phase drift estimation for underwater acoustic communications”. IEEE Global Communications Conference, Texsas, USA, 8-12 December 2014.
  • [31] Zhao X, Pompili D, Alves J. “underwater acoustic carrier aggregation: Achievable Rate and Energy-Efficiency Evaluation”. IEEE Journal of Oceanic Engineering, 42(4), 1035-1048, 2017.
  • [32] Qarabaqi P, Stojanovic M. “Acoustic Channel Simulator”. http://millitsa.coe.neu.edu/?q=projects (10.11.2018).
  • [33] Stefanov A, Stojanovic M. “Design and performance analysis of underwater acoustic networks”. IEEE Journal on Selected Areas in Communications, 29(10), 2012-2021, 2011.
  • [34] Shi Y, Eberhart R. “A Modified Particle Swarm Optimizer”. Proceedings of the Evolutionary Computation, Alaska, USA, 4-9 May 1998.
  • [35] Kandiyoti R. “Under the sea”. Engineering & Technology, 4(14), 26-28, 2009.
Year 2020, Volume: 26 Issue: 5, 908 - 915, 23.10.2020

Abstract

References

  • [1] United Nations. The First Global Integrated Marine Assessment: World Ocean Assessment. 1th ed. Cambridge, UK, Cambridge University Press, 2017.
  • [2] Barbagelata A, Barbagelata, L. “New acoustic leak system saves Money offshore”. Pipeline Gas Journal, 231(11), 42-44, 2004.
  • [3] Det Norske Veritas. “Selection and Use of Subsea Leak Detection Systems”. Recommended Practice Det Norske Veritas DNV-RP-F302, Veritasveien, Norway, 2010.
  • [4] Mahmutoglu Y, Turk K. “A passive acoustic based system to locate leak hole in underwater natural gas pipelines”. Digital Signal Processing, 76, 59-65, 2018.
  • [5] Thodi P, Paulin M, DeGeer D, Lanan G. “Offshore pipeline leak detection technologies for arctic applications”. Subsea and Arctic Leak Detection Symposium, Houston, USA, 5-6 December 2012.
  • [6] Zhang J. “Designing a cost effective and reliable pipeline leak detection system”. Pipeline Reliability Conference, Houston, USA, 19-22 November 1996.
  • [7] Murvay P, Silea I. “A survey on gas leak detection and localization techniques”. Journal of Loss Prevention in the Process Industries, 25(6), 966-973, 2012.
  • [8] Mahmutoglu Y, Turk K. “Remote leak hole localization for underwater natural gas pipelines”. 40th Telecommunications and Signal Processing Conference, Barcelona, Spain, 5-7 July 2017.
  • [9] Mahmutoglu Y, Turk K. “Localization of leakages in underwater natural gas pipelines for multipath propagation”. 26th Signal Processing and Communications Application Conference, İzmir, Turkey, 2-5 May 2018.
  • [10] Qarabaqi P, Stojanovic M. “Statistical Characterization and Computationally Efficient Modeling of a Class of Underwater Acoustic Communication Channels”. IEEE Journal Oceanic Engineering, 38(4), 701-717, 2013.
  • [11] Bhuiyan MZH, Lohan ES. “Advanced multipath mitigation techniques for satellite-based positioning applications”. International Journal of Navigation and Observation, 2010, 1-15, 2010.
  • [12] Tamazin M, Noureldin A, Korenberg MJ, Kamel AM. “A New High-Resolution GPS Multipath Mitigation Technique Using Fast Orthogonal Search”. Journal of Navigation, 69, 794-814, 2016.
  • [13] Marx M, Kokozinski R, Müller HC. “Time Synchronization for Real Time Localization Systems with Multi Path Mitigation”. IEEE MTT-S International Microwave Workshop on Wireless Sensing, Local Positioning and RFID, Cavtat, Croatia, 24-25 September 2009.
  • [14] Aram M, El-Rabbany A, Krishnan S, Anpalagan A. “Single Frequency Multipath Mitigation Based On Wavelet Analysis”. Journal of Navigation, 60, 281-290, 2007.
  • [15] Ladha C, Sharif BS, Tsimenidis CC. “Mitigating propagation errors for indoor positioning in wireless sensor networks”. IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS), Pisa, Italy, 8-11 October 2007.
  • [16] Lazaro A, Girbau D, Moravek P, Villarino R. “A study on localization in wireless sensor networks using frequency diversity for mitigating multipath effects”. Elektronika Ir Elektrotechnika, 19(13), 82-87, 2013.
  • [17] Li-Jun C, Xiang G, Liang A. “Multipath passive localization in shallow water channel”. Journal of Nanjing University (Natural Sciences), 48(5), 609-615, 2012.
  • [18] Porter MB, Bucker HP. “Gaussian beam tracing for computing ocean acoustic fields”. Journal of Acoustical Society of America, 82(4), 1348-1359, 1987.
  • [19] Heitsenrether RM, Badiey M. “Modeling acoustic signal fluctuations induced by sea surface roughness”. Proceedings of High Frequency Ocean Acoustics Conference (AIP Conference), California, USA, 1-5 March 2004.
  • [20] Peterson JC, Porter MB. “Ray/beam tracing for modeling the effects of ocean and platform dynamics”. IEEE Journal of Oceanic Engineering, 38(4), 655-665, 2013.
  • [21] Qarabaqi P, Stojanovic M. “Statistical modeling of a shallow water acoustic communication channel”. Proceedings of 3rd underwater acoustic measurements conference, Nafplion, Greece, 21-26 June 2009.
  • [22] Radosevic A, Proakis J, Stojanovic M. “Statistical characterization and capacity of shallow water acoustic channels”. Proceedings of IEEE Oceans Europe Conference, Bremen, Germany, 11-14 May 2009.
  • [23] Socheleau F, Passerieux J, Laot C. “Characterisation of time-varying underwater acoustic communication channel with application to channel capacity”. Proceedings of 3rd Underwater Acoustic Measurements Conference, Nafplion, Greece, 21-26 June 2009.
  • [24] Galvin R, Coats REW. “A stochastic underwater acoustic channel model”. Proceedings of MTS/IEEE OCEANS Conference, Florida, USA, 23-26 September 1996.
  • [25] Qarabaqi P, Stojanovic M. “Modeling the large scale transmission loss in underwater acoustic channels”. Proceedings of 49th Annual Allerton Conference on Communication, Control and Computing, Illinois, USA, 28-30 September 2011.
  • [26] Tomasi B, Casari P, Badia L, Zorzi M. “A study of incremental redundancy hybrid ARQ over Markov channel models derived from experimental data”. Proceedings of the 5th ACM International Workshop on UnderWater Networks, Massachusetts, USA, September 30-October 10 2010.
  • [27] Wang WB, Yang TC. “High-frequency channel characterization for-ary frequency-shift-keying underwater acoustic communications”. Journal of Acoustical Society of America, 120(5), 2615-2626, 2006.
  • [28] Zhang J, Cross J, Zheng YR. “Statistical channel modeling of wireless shallow water acoustic communications from experiment data”. Proceedings Military Communications Conference, California, USA, 31 October-3 November 2010.
  • [29] Kari D, Marivani I, Khan F, Sayin MO, Kozat SS. “Robust adaptive algorithms for underwater acoustic channel estimation and their performance analysis”. Digital Signal Processing, 68, 57-68, 2017.
  • [30] Pedrosa P, Dinis R, Nunes F. “Joint equalization and phase drift estimation for underwater acoustic communications”. IEEE Global Communications Conference, Texsas, USA, 8-12 December 2014.
  • [31] Zhao X, Pompili D, Alves J. “underwater acoustic carrier aggregation: Achievable Rate and Energy-Efficiency Evaluation”. IEEE Journal of Oceanic Engineering, 42(4), 1035-1048, 2017.
  • [32] Qarabaqi P, Stojanovic M. “Acoustic Channel Simulator”. http://millitsa.coe.neu.edu/?q=projects (10.11.2018).
  • [33] Stefanov A, Stojanovic M. “Design and performance analysis of underwater acoustic networks”. IEEE Journal on Selected Areas in Communications, 29(10), 2012-2021, 2011.
  • [34] Shi Y, Eberhart R. “A Modified Particle Swarm Optimizer”. Proceedings of the Evolutionary Computation, Alaska, USA, 4-9 May 1998.
  • [35] Kandiyoti R. “Under the sea”. Engineering & Technology, 4(14), 26-28, 2009.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Yiğit Mahmutoğlu This is me

Kadir Türk This is me

Publication Date October 23, 2020
Published in Issue Year 2020 Volume: 26 Issue: 5

Cite

APA Mahmutoğlu, Y., & Türk, K. (2020). Sualtı doğalgaz boru hatlarındaki sızıntıların konumlandırılmasının zaman ve frekans seçici akustik kanalda incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(5), 908-915.
AMA Mahmutoğlu Y, Türk K. Sualtı doğalgaz boru hatlarındaki sızıntıların konumlandırılmasının zaman ve frekans seçici akustik kanalda incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. October 2020;26(5):908-915.
Chicago Mahmutoğlu, Yiğit, and Kadir Türk. “Sualtı doğalgaz Boru hatlarındaki sızıntıların konumlandırılmasının Zaman Ve Frekans seçici Akustik Kanalda Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26, no. 5 (October 2020): 908-15.
EndNote Mahmutoğlu Y, Türk K (October 1, 2020) Sualtı doğalgaz boru hatlarındaki sızıntıların konumlandırılmasının zaman ve frekans seçici akustik kanalda incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26 5 908–915.
IEEE Y. Mahmutoğlu and K. Türk, “Sualtı doğalgaz boru hatlarındaki sızıntıların konumlandırılmasının zaman ve frekans seçici akustik kanalda incelenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 26, no. 5, pp. 908–915, 2020.
ISNAD Mahmutoğlu, Yiğit - Türk, Kadir. “Sualtı doğalgaz Boru hatlarındaki sızıntıların konumlandırılmasının Zaman Ve Frekans seçici Akustik Kanalda Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26/5 (October 2020), 908-915.
JAMA Mahmutoğlu Y, Türk K. Sualtı doğalgaz boru hatlarındaki sızıntıların konumlandırılmasının zaman ve frekans seçici akustik kanalda incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26:908–915.
MLA Mahmutoğlu, Yiğit and Kadir Türk. “Sualtı doğalgaz Boru hatlarındaki sızıntıların konumlandırılmasının Zaman Ve Frekans seçici Akustik Kanalda Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 26, no. 5, 2020, pp. 908-15.
Vancouver Mahmutoğlu Y, Türk K. Sualtı doğalgaz boru hatlarındaki sızıntıların konumlandırılmasının zaman ve frekans seçici akustik kanalda incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26(5):908-15.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif