Research Article
BibTex RIS Cite

Asenkron motorun stator q-eksen gerilimini kullanan alan yönlendirmeli vektör kontrollü gerilim sensörü kullanmadan sensörsüz hız tahmini

Year 2021, Volume: 27 Issue: 2, 210 - 219, 04.04.2021

Abstract

Bu çalışmanın amacı, asenkron motorlar (ASM) için sensörsüz, dolaylı, alan yönlendirmeli vektör kontrollü bir hız tahmin yönteminin geliştirilmesidir. Önerilen yöntem, yeni bir Model referans adaptif sistemdir(MRAS) ve motorun hızını hesaplamak için sadece kararlı hal alan yönlendirme durumunda stator q-eksen gerilim denklemine ihtiyaç duyar. Hesaplanan gerilim doğrudan kontrol algoritması içerisinde üretilen q-ekseni referans gerilimi ile karşılaştırıldığından, bu yöntem bir referans modele ihtiyaç duymaz, ayrıca gerilim sensörü gereksinimini ortadan kaldırır. Bu basit denklemde herhangi bir rotor parametresi yoktur ve bu sistemin rotor parametrelerinin değişimine karşı bağışıklık kazandırır. Dahası, bu basitleştirilmiş hesaplama akı tahmini gerekliliğini ortadan kaldırdığı için yöntem saf entegrasyon sorunlarına karşı daha az duyarlıdır. Böylece önerilen MRAS çok düşük ve sıfır hızlarda oldukça doğru hız tahmini yapabilir. Ayrıca, önerilen MRAS yöntemi gerilim sensörü gereksinimini ortadan kaldırmaktadır. Bu sayede özellikle düşük hızlarda gerilim sensörünün ölçüm gürültülerinin sebep olabileceği tahmin hatalarının önüne geçilmiş ve sistemin düşük ve sıfır hız performansları iyileştirilmiş olmaktadır. Bu çalışmada simülasyon çalışmaları MATLAB / SIMULINK ortamında tamamlanmıştır.

References

  • [1] Lipo T. Vector control and dynamics of AC drives. 1st ed. New York, USA, Oxford, 1996.
  • [2] Holtz J, Thimm T. “Identification of the machine parameters in a vector controlled induction motor drive” IEEE Industry Applications Society Annual Meeting, San Diego, USA, 1-5 October 1989.
  • [3] Holtz J. “State of the art of controlled AC drives without speed sensor”. International Conference on Power Electronics and Drive Systems, Singapore, 21-24 February 1995.
  • [4] Holtz J. “Sensorless control of ınduction machines-with or without signal ınjection?”. IEEE Transaction Industrial Electronics, 53(1), 7-30, 2006.
  • [5] Syam P, Kumar R, Das S, Chattopadhyay A.K. “Review on model reference adaptive system for sensorless vector control of induction motor drives”. IET Electric Power Appications, 9(7), 496-511, 2015.
  • [6] Lascu C, Boldea I, Blaabjerg F. “Very-Low-Speed variable-structure control of sensorless ınduction machine drives without signal ınjection”. IEEE Transaction Industrial Applications, 41(2), 591-598, 2005.
  • [7] Schauder C. “Adaptive speed identification for vector control of induction motors without rotational transducers”. IEEE Transaction Industial Application, 28(5), 1054-1061, 1992.
  • [8] Landau Y.D. "Adaptive control: The model reference approach". IEEE Transactions on Systems and Cybernetics, 14(1), 169-170, 1984.
  • [9] Shoudao H, Yaonan W, Jian G, Jiantao L, Sihai Q. “The vector control based on mras speed sensorless ınduction motor drive”. Intelligent Control and Automation, Hangzhou, China, 15-19 June 2004.
  • [10] Shoudao H, Yaonan W, Jian G, Jiantao L, Sihai Q. “The vector control based on MRAS speed sensorless induction motor drive”. Fifth World Congress on Intelligent Control and Automation, Hangzhou, China, 15-19 June 2004.
  • [11] Dehghan-Azad E, Gadoue S, Atkinson D, Slater H, Barrass P, Blaabjerg F. “Sensorless control of IM based on stator-voltage MRAS for Limp-Home EV Applications”. IEEE Transaction Power Electronics, 33(3), 1911-1921, 2018.
  • [12] Maiti S, Chakraborty C. “A new instantaneous reactive power based MRAS for sensorless induction motor drive”. Simulation Model Practice Theory, 18(9), 1314-1326, 2010.
  • [13] Shinnaka S. “Sensorless vector control of ınduction motors using minimum dimensional flux d-state observer with ınstantaneous speed estimation”. Electric Engineering in Japan, 196(1), 31-41, 2016.
  • [14] Pal A, Das S, Chattopadhyay A.K. “An ımproved rotor flux space vector based MRAS for field-oriented control of ınduction motor drives”. IEEE Transaction Power Electronics, 33(6), 5131-5141, 2018.
  • [15] Elbuluk M, Husain I. “Neural-Network-based model reference adaptive systems for high-performance motor drives and motion controls”. IEEE Transaction Industrial Applications, 38(3), 879-886, 2002.
  • [16] Abu-Rub H, Khan M, Iqbal A, Ahmed S. “MRAS-Based sensorless control of a five-phase induction motor drive with a predictive adaptive model”. IEEE International Symposium on Industrial Electronics, Bari, Italy, 4-7 July 2010.
  • [17] Armstrong G, Atkinson D, and Acarnley P. “A comparison of estimation techniques for sensorless vector controlled induction motor drives”. Proceedings of Second International Conference on Power Electronics and Drive Systems, Singapore, 26-29 May 1997.
  • [18] Vas P. Sensorless Vector and Direct Torque Control. 1st ed. New York, USA, Oxford,1998.
  • [19] Soltani J, Mizaeian B. "Simultaneous speed and rotor time constant identification of an induction motor drive based on the model reference adaptive system combined with a fuzzy resistance estimator". 1998 International Conference on Power Electronic Drives and Energy Systems for Industrial Growth, Perth, WA, Australia, 1-3 December 1998
  • [20] Garcia P, Briz F, Degner M, Diaz-Reigosa D. “Accuracy, bandwidth, and stability limits of carrier-signal-ınjection-based sensorless control methods”. IEEE Transaction Industrial Applications, 43(4), 990-1000, 2007.
  • [21] Fang-Zheng P, Fukao F. “Robust speed identification for speed-sensorless vector control of induction motors”. IEEE Transaction Industrial Applications, 30(5), 1234-1240, 1994.
  • [22] Holtz J. "Sensorless control of induction motor drives". Proceedings of the IEEE, 90(8), 1359-1394, 2002.
  • [23] Young-Real K, Seung-Ki S, Min-Ho P. “Speed sensorless vector control of induction motor using extended Kalman filter”. IEEE Transaction Industrial Applications, 30(5), 1225-1233, 1994.
  • [24] Kubota H, Matsuse K, Nakano T. "New adaptive flux observer of induction motor for wide speed range motor drives". 16th Annual Conference of IEEE Industrial Electronics Society, Pacific Grove, CA, USA, 27-30 November 1990.
  • [25] Vas P. “Implementation of ANN-based sensorless induction motor drives”. 9th International Conference on Electrical Machines and Drives, Canterbury, UK, 1-3 September 1999.
  • [26] Rai R, Shukla S, Singh B. "Reactive power based MRAS for speed estimation of solar fed ınduction motor with ımproved feedback linearization for water pumping". IEEE Transactions on Industrial Informatics, 16(7), 4714-4725, 2020.
  • [27] Cacciato M, Scarcella G, Scelba G, Bille S, Costanzo D, Cucuccio A. “Comparison of low-cost-implementation sensorless schemes in vector controlled adjustable speed drives”. 2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, 11-13 June 2008.
  • [28] Dybkowski M, Orlowska-Kowalska T. “Low-speed performance of the stator current-based MRAS estimator with FL controller in the sensorless induction motor drive”. 11th International Conference on Optimization of Electrical and Electronic Equipment, Brasov, Romania, 22-24 May 2008.
  • [29] Orlowska-Kowalska T, Dybkowski M. “Stator-Current-based MRAS estimator for a wide range speed-sensorless ınduction-motor drive”. IEEE Transaction Industrial Electronics, 57(4), 1296-1308, 2010.
  • [30] Zerdali E, Menguc E. “Novel complex-valued stator current-based MRAS estimators with different adaptation mechanisms”. IEEE Transaction Instrumentation Measurement, 68(10), 3793-3795, 2019.
  • [31] Korzonek M, Tarchala G, Orlowska-Kowalska T. “Simple stability enhancement method for stator current error-based MRAS-Type speed estimator for induction motor”. IEEE Transaction Industrial Electronics, 67(7), 5854-5866, 2020.
  • [32] Ravi-Teja A, Chakraborty C. “A novel model reference adaptive controller for estimation of speed and stator resistance for vector controlled induction motor drives”. IEEE International Symposium on Industrial Electronics, Bari, Italy, 4-7 July 2010.
  • [33] Ravi-Teja A, Chakraborty C, Maiti S, Hori Y. “A new model reference adaptive controller for four quadrant vector controlled ınduction motor drives”. IEEE Transaction Industrial Electronics, 59(10), 3757-3767, 2012.
  • [34] Verma V, Chakraborty C, Maiti S, Hori Y. “Speed sensorless vector controlled ınduction motor drive using single current sensor”. IEEE Transaction Energy Conversion, 28(4), 938-950, 2013.
  • [35] Das S, Kumar R, Pal A. “MRAS-Based speed estimation of ınduction motor drive utilizing machines’ d- and q-circuit ımpedances”. IEEE Transaction Industial Electronics, 66(6), 4286-4295, 2019.
  • [36] Ozdemir S, Sozer Y, Umurkan N. “Voltage error phase locked loop (PLL) based model adaptive sensorless vector control algorithm for induction motors”. IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, USA, 26-30 March 2017.

Stator q-axis voltage error based sensorless speed estimation of field oriented vector controlled induction motor without using voltage transducer

Year 2021, Volume: 27 Issue: 2, 210 - 219, 04.04.2021

Abstract

The purpose of the study is to develop a high-performance speed sensorless indirect field oriented control for induction motors (IMs). The proposed method is a novel Model Reference Adaptive System (MRAS) and needs only steady-state stator q-axis voltage equation to estimate rotor speed. And also, the proposed speed estimator algorithm removes the voltage transducer requirement in calculations since the algorithm compares the current requlator PI controller output with the calculated q-axis stator voltage. So the system does not need a reference loop since the calculated voltage I adaptive sub-model is directly compared with controller output. This simple equation does not require any rotor parameter and this makes the system immune to the variation of rotor parameters. Moreover, this unique calculation eliminates the requirement of flux estimation thus, the method is less sensitive to pure integration problems. This makes the estimator quite accurate at very low and zero speeds. Moreover, the suggested MRAS technique eliminates the voltage transducer measurement noises so, the low speed accuracy of the speed estimator is increased. Which are validated in simulations using MATLAB/SIMULINK.

References

  • [1] Lipo T. Vector control and dynamics of AC drives. 1st ed. New York, USA, Oxford, 1996.
  • [2] Holtz J, Thimm T. “Identification of the machine parameters in a vector controlled induction motor drive” IEEE Industry Applications Society Annual Meeting, San Diego, USA, 1-5 October 1989.
  • [3] Holtz J. “State of the art of controlled AC drives without speed sensor”. International Conference on Power Electronics and Drive Systems, Singapore, 21-24 February 1995.
  • [4] Holtz J. “Sensorless control of ınduction machines-with or without signal ınjection?”. IEEE Transaction Industrial Electronics, 53(1), 7-30, 2006.
  • [5] Syam P, Kumar R, Das S, Chattopadhyay A.K. “Review on model reference adaptive system for sensorless vector control of induction motor drives”. IET Electric Power Appications, 9(7), 496-511, 2015.
  • [6] Lascu C, Boldea I, Blaabjerg F. “Very-Low-Speed variable-structure control of sensorless ınduction machine drives without signal ınjection”. IEEE Transaction Industrial Applications, 41(2), 591-598, 2005.
  • [7] Schauder C. “Adaptive speed identification for vector control of induction motors without rotational transducers”. IEEE Transaction Industial Application, 28(5), 1054-1061, 1992.
  • [8] Landau Y.D. "Adaptive control: The model reference approach". IEEE Transactions on Systems and Cybernetics, 14(1), 169-170, 1984.
  • [9] Shoudao H, Yaonan W, Jian G, Jiantao L, Sihai Q. “The vector control based on mras speed sensorless ınduction motor drive”. Intelligent Control and Automation, Hangzhou, China, 15-19 June 2004.
  • [10] Shoudao H, Yaonan W, Jian G, Jiantao L, Sihai Q. “The vector control based on MRAS speed sensorless induction motor drive”. Fifth World Congress on Intelligent Control and Automation, Hangzhou, China, 15-19 June 2004.
  • [11] Dehghan-Azad E, Gadoue S, Atkinson D, Slater H, Barrass P, Blaabjerg F. “Sensorless control of IM based on stator-voltage MRAS for Limp-Home EV Applications”. IEEE Transaction Power Electronics, 33(3), 1911-1921, 2018.
  • [12] Maiti S, Chakraborty C. “A new instantaneous reactive power based MRAS for sensorless induction motor drive”. Simulation Model Practice Theory, 18(9), 1314-1326, 2010.
  • [13] Shinnaka S. “Sensorless vector control of ınduction motors using minimum dimensional flux d-state observer with ınstantaneous speed estimation”. Electric Engineering in Japan, 196(1), 31-41, 2016.
  • [14] Pal A, Das S, Chattopadhyay A.K. “An ımproved rotor flux space vector based MRAS for field-oriented control of ınduction motor drives”. IEEE Transaction Power Electronics, 33(6), 5131-5141, 2018.
  • [15] Elbuluk M, Husain I. “Neural-Network-based model reference adaptive systems for high-performance motor drives and motion controls”. IEEE Transaction Industrial Applications, 38(3), 879-886, 2002.
  • [16] Abu-Rub H, Khan M, Iqbal A, Ahmed S. “MRAS-Based sensorless control of a five-phase induction motor drive with a predictive adaptive model”. IEEE International Symposium on Industrial Electronics, Bari, Italy, 4-7 July 2010.
  • [17] Armstrong G, Atkinson D, and Acarnley P. “A comparison of estimation techniques for sensorless vector controlled induction motor drives”. Proceedings of Second International Conference on Power Electronics and Drive Systems, Singapore, 26-29 May 1997.
  • [18] Vas P. Sensorless Vector and Direct Torque Control. 1st ed. New York, USA, Oxford,1998.
  • [19] Soltani J, Mizaeian B. "Simultaneous speed and rotor time constant identification of an induction motor drive based on the model reference adaptive system combined with a fuzzy resistance estimator". 1998 International Conference on Power Electronic Drives and Energy Systems for Industrial Growth, Perth, WA, Australia, 1-3 December 1998
  • [20] Garcia P, Briz F, Degner M, Diaz-Reigosa D. “Accuracy, bandwidth, and stability limits of carrier-signal-ınjection-based sensorless control methods”. IEEE Transaction Industrial Applications, 43(4), 990-1000, 2007.
  • [21] Fang-Zheng P, Fukao F. “Robust speed identification for speed-sensorless vector control of induction motors”. IEEE Transaction Industrial Applications, 30(5), 1234-1240, 1994.
  • [22] Holtz J. "Sensorless control of induction motor drives". Proceedings of the IEEE, 90(8), 1359-1394, 2002.
  • [23] Young-Real K, Seung-Ki S, Min-Ho P. “Speed sensorless vector control of induction motor using extended Kalman filter”. IEEE Transaction Industrial Applications, 30(5), 1225-1233, 1994.
  • [24] Kubota H, Matsuse K, Nakano T. "New adaptive flux observer of induction motor for wide speed range motor drives". 16th Annual Conference of IEEE Industrial Electronics Society, Pacific Grove, CA, USA, 27-30 November 1990.
  • [25] Vas P. “Implementation of ANN-based sensorless induction motor drives”. 9th International Conference on Electrical Machines and Drives, Canterbury, UK, 1-3 September 1999.
  • [26] Rai R, Shukla S, Singh B. "Reactive power based MRAS for speed estimation of solar fed ınduction motor with ımproved feedback linearization for water pumping". IEEE Transactions on Industrial Informatics, 16(7), 4714-4725, 2020.
  • [27] Cacciato M, Scarcella G, Scelba G, Bille S, Costanzo D, Cucuccio A. “Comparison of low-cost-implementation sensorless schemes in vector controlled adjustable speed drives”. 2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, 11-13 June 2008.
  • [28] Dybkowski M, Orlowska-Kowalska T. “Low-speed performance of the stator current-based MRAS estimator with FL controller in the sensorless induction motor drive”. 11th International Conference on Optimization of Electrical and Electronic Equipment, Brasov, Romania, 22-24 May 2008.
  • [29] Orlowska-Kowalska T, Dybkowski M. “Stator-Current-based MRAS estimator for a wide range speed-sensorless ınduction-motor drive”. IEEE Transaction Industrial Electronics, 57(4), 1296-1308, 2010.
  • [30] Zerdali E, Menguc E. “Novel complex-valued stator current-based MRAS estimators with different adaptation mechanisms”. IEEE Transaction Instrumentation Measurement, 68(10), 3793-3795, 2019.
  • [31] Korzonek M, Tarchala G, Orlowska-Kowalska T. “Simple stability enhancement method for stator current error-based MRAS-Type speed estimator for induction motor”. IEEE Transaction Industrial Electronics, 67(7), 5854-5866, 2020.
  • [32] Ravi-Teja A, Chakraborty C. “A novel model reference adaptive controller for estimation of speed and stator resistance for vector controlled induction motor drives”. IEEE International Symposium on Industrial Electronics, Bari, Italy, 4-7 July 2010.
  • [33] Ravi-Teja A, Chakraborty C, Maiti S, Hori Y. “A new model reference adaptive controller for four quadrant vector controlled ınduction motor drives”. IEEE Transaction Industrial Electronics, 59(10), 3757-3767, 2012.
  • [34] Verma V, Chakraborty C, Maiti S, Hori Y. “Speed sensorless vector controlled ınduction motor drive using single current sensor”. IEEE Transaction Energy Conversion, 28(4), 938-950, 2013.
  • [35] Das S, Kumar R, Pal A. “MRAS-Based speed estimation of ınduction motor drive utilizing machines’ d- and q-circuit ımpedances”. IEEE Transaction Industial Electronics, 66(6), 4286-4295, 2019.
  • [36] Ozdemir S, Sozer Y, Umurkan N. “Voltage error phase locked loop (PLL) based model adaptive sensorless vector control algorithm for induction motors”. IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, USA, 26-30 March 2017.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Sadık Özdemir This is me

Publication Date April 4, 2021
Published in Issue Year 2021 Volume: 27 Issue: 2

Cite

APA Özdemir, S. (2021). Asenkron motorun stator q-eksen gerilimini kullanan alan yönlendirmeli vektör kontrollü gerilim sensörü kullanmadan sensörsüz hız tahmini. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 210-219.
AMA Özdemir S. Asenkron motorun stator q-eksen gerilimini kullanan alan yönlendirmeli vektör kontrollü gerilim sensörü kullanmadan sensörsüz hız tahmini. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. April 2021;27(2):210-219.
Chicago Özdemir, Sadık. “Asenkron Motorun Stator Q-Eksen Gerilimini Kullanan Alan yönlendirmeli vektör Kontrollü Gerilim sensörü Kullanmadan sensörsüz hız Tahmini”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27, no. 2 (April 2021): 210-19.
EndNote Özdemir S (April 1, 2021) Asenkron motorun stator q-eksen gerilimini kullanan alan yönlendirmeli vektör kontrollü gerilim sensörü kullanmadan sensörsüz hız tahmini. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27 2 210–219.
IEEE S. Özdemir, “Asenkron motorun stator q-eksen gerilimini kullanan alan yönlendirmeli vektör kontrollü gerilim sensörü kullanmadan sensörsüz hız tahmini”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 27, no. 2, pp. 210–219, 2021.
ISNAD Özdemir, Sadık. “Asenkron Motorun Stator Q-Eksen Gerilimini Kullanan Alan yönlendirmeli vektör Kontrollü Gerilim sensörü Kullanmadan sensörsüz hız Tahmini”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27/2 (April 2021), 210-219.
JAMA Özdemir S. Asenkron motorun stator q-eksen gerilimini kullanan alan yönlendirmeli vektör kontrollü gerilim sensörü kullanmadan sensörsüz hız tahmini. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27:210–219.
MLA Özdemir, Sadık. “Asenkron Motorun Stator Q-Eksen Gerilimini Kullanan Alan yönlendirmeli vektör Kontrollü Gerilim sensörü Kullanmadan sensörsüz hız Tahmini”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 27, no. 2, 2021, pp. 210-9.
Vancouver Özdemir S. Asenkron motorun stator q-eksen gerilimini kullanan alan yönlendirmeli vektör kontrollü gerilim sensörü kullanmadan sensörsüz hız tahmini. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27(2):210-9.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.