Araştırma Makalesi
BibTex RIS Kaynak Göster

Sismik çarpışma olasılığı bulunan betonarme binalar için gerekli derz mesafesi

Yıl 2021, Cilt: 27 Sayı: 3, 281 - 289, 09.06.2021

Öz

Bu çalışmada, düşük ve orta katlı betonarme yapıların deprem derzlerinin zaman tanım alanında dinamik analizlerle belirlenmesi amaçlanmıştır. Düşük ve orta yükseklikteki binaları temsil etmesi için 3, 4, 5, 6, 7, 8, 9 ve 10 katlı betonarme bina modelleri 2018 Türkiye Bina Deprem Yönetmeliğine (TBDY-2018) göre tasarlanmıştır. Bu modellerde doğrusal elastik olmayan davranışı yansıtabilmek için kolon ve kiriş uçlarında yığılı plastik mafsallar tanımlanmıştır. Üç boyutlu (3B) olarak modellenen bina modelleri, kat seviyelerinden doğrusal link (gap) elemanlar ile birbirlerine bağlanarak ikili bina modelleri türetilmiştir. Farklı bina yüksekliklerine sahip betonarme binalar arasında farklı kombinasyonlar türetilerek 28 farklı ikili model oluşturulmuştur. Bu binalar arasında bırakılması gereken minimum boşluk mesafesinin belirlenebilmesi için TBDY-2018 ile uyumlu bir deprem seti seçilmiştir. Seçilen deprem seti, 11 farklı ivme kayıt takımından oluşmaktadır. Zaman tanım alanında doğrusal elastik olmayan analizlerde kullanılmak üzere toplamda 22 adet ivme kaydı elde edilmiştir. 616 adet dinamik analiz sonucu ile elde edilen çarpışma mesafeleri, TBDY-2018’ de yer alan derz mesafeleri ile kıyaslanmıştır. Çalışma sonucunda, mevcut yönetmelikte verilen gerekli boşluk mesafelerinin çarpışmayı önlemek için yeterli olmadığı görülmüştür. Sismik yükler altındaki derz mesafelerinin tahmininde kullanılan α katsayısı için komşu binaların periyot oranlarına bağlı olarak basitleştirilmiş yeni bir denklem önerilmiştir.

Kaynakça

  • [1] Bertero VV, Collins RG. “Investigation of the failures of the Olive View stair-towers during the San Fernando earthquake and their implications on seismic design”. Earthquake Engineering Research Center, University of California, Berkeley, CA, Report No. EERC 73-26, 1973.
  • [2] Rosenblueth E, Meli R. “The 1985 earthquake: causes and effects in Mexico City”. Concrete International, 8(5), 23-34, 1986.
  • [3] Kasai K, Maison BF. “Building pounding damage during the 1989 Loma Prieta earthquake”. Engineering Structures, 19, 195-207, 1997.
  • [4] Northridge Reconnaissance Team. “Northridge Earthquake of January 17, 1994”. Oakland, California, Reconnaissance Report, EERI 25-47, 1996.
  • [5] Youd TL, Bardet JP, Bray JD. “Kocaeli, Turkey, earthquake of August 17, 1999”. Earthquake Engineering Research Institute, Oakland, CA, Reconnaissance Report, 2000.
  • [6] Uzarski J, Arnold C. “Chi-Chi, Taiwan, earthquake of September 21, 1999”. Earthquake Engineering Research Institute, Oakland, CA, Reconnaissance Report, Publ. No. 01-02, 2001.
  • [7] Ozmen HB, Inel M, Akyol E, Cayci BT, Un H. “Evaluations on the relation of RC building damages with structural parameters after May 19, 2011 Simav (Turkey) earthquake”. Natural Hazards, 71, 63-84, 2014.
  • [8] Inel M, Ozmen HB, Akyol E. “Observations on the building damages after 19 May 2011 Simav (Turkey) earthquake”. Bulletin of Earthquake Engineering, 11, 255-283, 2013.
  • [9] Otsuka H, Unjoh S, Terayama T, Hoshikuma J, Kosa K. “Damage to highway bridges by the 1995 Hyogoken Nanbu earthquake and the retrofit of highway bridges in Japan”. In: Third US.-Japan Workshop on Seismic Retrofit of Bridges, Osaka, Japan, 10-11 December 1996.
  • [10] Chouw N, H Hao. “Pounding damage to buildings and bridges in the 22 February 2011 Christchurch earthquake”. International Journal of Protective Structures 3(2), 123-140, 2012.
  • [11] Maison BF, Kasai K. “Analysis for type of structural pounding”. Jousrnal of Structural Engineering, 116, 957-977, 1990.
  • [12] Anagnostopoulos SA, Spiliopoulos KV. “An investigation of earthquake induced pounding between adjacent buildings”. Earthquake Engineering and Structural Dynamics, 21, 289-302, 1992.
  • [13] Jeng V, Kasai K, Maison BF. “A spectral difference method to estimate building separations to avoid pounding”. Earthquake Spectra, 8(2), 201-223, 1992.
  • [14] Barbato M, Tubaldi E. “A probabilistic performance-based approach for mitigating the seismic pounding risk between adjacent buildings”. Earthquake Engineering Structural Dynamics, 42(8), 1203-1219, 2013.
  • [15] Favvata MJ. “Minimum required separation gap for adjacent RC frames with potential inter-story seismic pounding”. Engineering Structures, 15, 643-659, 2017.
  • [16] Abdel Raheem SE. “Mitigation measures for earthquake induced pounding effects on seismic performance of adjacent buildings”. Bulletin of Earthquake Engineering, 12(4), 1705-1724, 2014.
  • [17] Türk Standartları Enstitüsü. “Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri”. Ankara, Türkiye, TSE 498, 1997.
  • [18] Afet ve Acil Durum Başkanlığı. “Türkiye Bina Deprem Yönetmeliği”. Ankara, Türkiye, 30364, 2018.
  • [19] Computers and Structures. “Integrated Finite Element Analysis and Design of Structures Basic Analysis Reference Manual”. New York, USA, 2019.
  • [20] van Mier JG, Pruijssers A, Reinhardt HW, Monnier T. “Load Time Response of Colliding Concrete Bodies”. Journal of Structural Engineering, 117(2), 354-374, 1991.
  • [21] Jankowski R. “Non linear viscoelastic modelling of earthquake induced structural pounding”. Earthquake Engineering and Structural Dynamics, 34(6), 595-611, 2005.
  • [22] Shakya K, Wijeyewickrema A. “Mid-Column Pounding of MultiStory Reinforced Concrete Buildings Considering Soil Effects”. Advances in Structural Engineering, 12(1), 71-85, 2009.
  • [23] Kamal M, Çaycı BT, İnel M. “Effects of pounding in low and mid-rise buildings”. Eskişehir Technical University Journal of Science and Technology B-Theoritical Sciences, 6, 141-151, 2018.
  • [24] Demirtas B, Bayraktar A, Dumanoglu A. “Model updating effects on the seismic behavior of tall buildings under far and near-fault ground motions”. Research on Engineering Structures & Materials; 3(2), 99-112, 2017.
  • [25] Abrahamson NA. “Non-Stationary Spectral Matching Program RSPMATCH”. Washington, USA, 1993.
  • [26] Boore DM. “Simulation of ground-motion using the stochastic method”. Pure and Applied Geophysics, 160, 635-676, 2003.
  • [27] Bommer JJ, Acevedo AB. “The use of real earthquake accelerograms as input to dynamic analysis”. Journal of Earthquake Engineering, Special Issue, 8(1), 43-91, 2004.
  • [28] Fahjan YM. “Selection and scaling of real earthquake accelerograms to fit the Turkish design spectra”. Teknik Dergi, 19(3), 4423-4444, 2008.
  • [29] European Committee for Standardization. “Design Provisions for Earthquake Resistance of Structures”. Brussels, Belgium, EC-8, 2004.
  • [30] American Society of Civil Engineers. “Minimum Design Loads for Buildings and Other Structures”. USA, 2010.
  • [31] Bayındırlık ve İskan Bakanlığı. “Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik”. Ankara, Türkiye, 26454, 2007.
  • [32] Kayhan AH, Korkmaz KA, Irfanoglu A. “Selecting and scaling real ground motion records using harmony search algorithm”. Soil Dynamics and Earthquake Engineering, 31, 941-953, 2011.
  • [33] Storn R, Price K. “Differential Evolution a Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces”. Technical Report, TR-95-012, 1995.
  • [34] University of California, Berkeley. “PEER Database”. http://nisee.berkeley.edu/spl/ (05.12.2011).
  • [35] Ozmen HB, Yilmaz H, Yildiz H. “An acceleration record set for different frequency content, amplitude and site classes” Research on Engineering Structures & Materials, 5(3), 321-333, 2019.

Required separation distance for reinforced concrete buildings with seismic pounding potential

Yıl 2021, Cilt: 27 Sayı: 3, 281 - 289, 09.06.2021

Öz

This study aims to investigate the determination of seismic separation distance of adjacent low and mid-rise reinforced concrete (RC) buildings using nonlinear time history analysis. The low and mid-rise RC buildings were reflected using 3, 4, 5, 6, 7, 8, 9 and 10-story buildings designed per 2018 Turkish Building Earthquake Code (TBEC). Beam and column elements are modeled as nonlinear frame elements with lumped plasticity by defining plastic hinges at both ends of beams and columns. The adjacent three-dimensional (3D) building models are connected to each other by linear link elements at the floor levels. 28 different adjacent building models were created by using the RC buildings with different building heights. In order to determine the minimum separation distance between these buildings, an earthquake set compatible with TBEC-2018 was selected. The earthquake set consists of 11 different record pair. Nonlinear time history analyses were carried out for each binary model using 22 acceleration records. The distances necessary to avoid pounding obtained from the result of 616 dynamic analyses were compared with the separation distances defined in the TBEC-2018. As a result of the study, it is seen that the required seismic separation distance per the current code was not enough to prevent pounding. A new simplified equation is proposed based on the period ratios of neighboring buildings for the coefficient (α) used in the estimation of gap distances under seismic loads.

Kaynakça

  • [1] Bertero VV, Collins RG. “Investigation of the failures of the Olive View stair-towers during the San Fernando earthquake and their implications on seismic design”. Earthquake Engineering Research Center, University of California, Berkeley, CA, Report No. EERC 73-26, 1973.
  • [2] Rosenblueth E, Meli R. “The 1985 earthquake: causes and effects in Mexico City”. Concrete International, 8(5), 23-34, 1986.
  • [3] Kasai K, Maison BF. “Building pounding damage during the 1989 Loma Prieta earthquake”. Engineering Structures, 19, 195-207, 1997.
  • [4] Northridge Reconnaissance Team. “Northridge Earthquake of January 17, 1994”. Oakland, California, Reconnaissance Report, EERI 25-47, 1996.
  • [5] Youd TL, Bardet JP, Bray JD. “Kocaeli, Turkey, earthquake of August 17, 1999”. Earthquake Engineering Research Institute, Oakland, CA, Reconnaissance Report, 2000.
  • [6] Uzarski J, Arnold C. “Chi-Chi, Taiwan, earthquake of September 21, 1999”. Earthquake Engineering Research Institute, Oakland, CA, Reconnaissance Report, Publ. No. 01-02, 2001.
  • [7] Ozmen HB, Inel M, Akyol E, Cayci BT, Un H. “Evaluations on the relation of RC building damages with structural parameters after May 19, 2011 Simav (Turkey) earthquake”. Natural Hazards, 71, 63-84, 2014.
  • [8] Inel M, Ozmen HB, Akyol E. “Observations on the building damages after 19 May 2011 Simav (Turkey) earthquake”. Bulletin of Earthquake Engineering, 11, 255-283, 2013.
  • [9] Otsuka H, Unjoh S, Terayama T, Hoshikuma J, Kosa K. “Damage to highway bridges by the 1995 Hyogoken Nanbu earthquake and the retrofit of highway bridges in Japan”. In: Third US.-Japan Workshop on Seismic Retrofit of Bridges, Osaka, Japan, 10-11 December 1996.
  • [10] Chouw N, H Hao. “Pounding damage to buildings and bridges in the 22 February 2011 Christchurch earthquake”. International Journal of Protective Structures 3(2), 123-140, 2012.
  • [11] Maison BF, Kasai K. “Analysis for type of structural pounding”. Jousrnal of Structural Engineering, 116, 957-977, 1990.
  • [12] Anagnostopoulos SA, Spiliopoulos KV. “An investigation of earthquake induced pounding between adjacent buildings”. Earthquake Engineering and Structural Dynamics, 21, 289-302, 1992.
  • [13] Jeng V, Kasai K, Maison BF. “A spectral difference method to estimate building separations to avoid pounding”. Earthquake Spectra, 8(2), 201-223, 1992.
  • [14] Barbato M, Tubaldi E. “A probabilistic performance-based approach for mitigating the seismic pounding risk between adjacent buildings”. Earthquake Engineering Structural Dynamics, 42(8), 1203-1219, 2013.
  • [15] Favvata MJ. “Minimum required separation gap for adjacent RC frames with potential inter-story seismic pounding”. Engineering Structures, 15, 643-659, 2017.
  • [16] Abdel Raheem SE. “Mitigation measures for earthquake induced pounding effects on seismic performance of adjacent buildings”. Bulletin of Earthquake Engineering, 12(4), 1705-1724, 2014.
  • [17] Türk Standartları Enstitüsü. “Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri”. Ankara, Türkiye, TSE 498, 1997.
  • [18] Afet ve Acil Durum Başkanlığı. “Türkiye Bina Deprem Yönetmeliği”. Ankara, Türkiye, 30364, 2018.
  • [19] Computers and Structures. “Integrated Finite Element Analysis and Design of Structures Basic Analysis Reference Manual”. New York, USA, 2019.
  • [20] van Mier JG, Pruijssers A, Reinhardt HW, Monnier T. “Load Time Response of Colliding Concrete Bodies”. Journal of Structural Engineering, 117(2), 354-374, 1991.
  • [21] Jankowski R. “Non linear viscoelastic modelling of earthquake induced structural pounding”. Earthquake Engineering and Structural Dynamics, 34(6), 595-611, 2005.
  • [22] Shakya K, Wijeyewickrema A. “Mid-Column Pounding of MultiStory Reinforced Concrete Buildings Considering Soil Effects”. Advances in Structural Engineering, 12(1), 71-85, 2009.
  • [23] Kamal M, Çaycı BT, İnel M. “Effects of pounding in low and mid-rise buildings”. Eskişehir Technical University Journal of Science and Technology B-Theoritical Sciences, 6, 141-151, 2018.
  • [24] Demirtas B, Bayraktar A, Dumanoglu A. “Model updating effects on the seismic behavior of tall buildings under far and near-fault ground motions”. Research on Engineering Structures & Materials; 3(2), 99-112, 2017.
  • [25] Abrahamson NA. “Non-Stationary Spectral Matching Program RSPMATCH”. Washington, USA, 1993.
  • [26] Boore DM. “Simulation of ground-motion using the stochastic method”. Pure and Applied Geophysics, 160, 635-676, 2003.
  • [27] Bommer JJ, Acevedo AB. “The use of real earthquake accelerograms as input to dynamic analysis”. Journal of Earthquake Engineering, Special Issue, 8(1), 43-91, 2004.
  • [28] Fahjan YM. “Selection and scaling of real earthquake accelerograms to fit the Turkish design spectra”. Teknik Dergi, 19(3), 4423-4444, 2008.
  • [29] European Committee for Standardization. “Design Provisions for Earthquake Resistance of Structures”. Brussels, Belgium, EC-8, 2004.
  • [30] American Society of Civil Engineers. “Minimum Design Loads for Buildings and Other Structures”. USA, 2010.
  • [31] Bayındırlık ve İskan Bakanlığı. “Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik”. Ankara, Türkiye, 26454, 2007.
  • [32] Kayhan AH, Korkmaz KA, Irfanoglu A. “Selecting and scaling real ground motion records using harmony search algorithm”. Soil Dynamics and Earthquake Engineering, 31, 941-953, 2011.
  • [33] Storn R, Price K. “Differential Evolution a Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces”. Technical Report, TR-95-012, 1995.
  • [34] University of California, Berkeley. “PEER Database”. http://nisee.berkeley.edu/spl/ (05.12.2011).
  • [35] Ozmen HB, Yilmaz H, Yildiz H. “An acceleration record set for different frequency content, amplitude and site classes” Research on Engineering Structures & Materials, 5(3), 321-333, 2019.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Muhammet Kamal Bu kişi benim

Mehmet İnel Bu kişi benim

Yayımlanma Tarihi 9 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 27 Sayı: 3

Kaynak Göster

APA Kamal, M., & İnel, M. (2021). Sismik çarpışma olasılığı bulunan betonarme binalar için gerekli derz mesafesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 281-289.
AMA Kamal M, İnel M. Sismik çarpışma olasılığı bulunan betonarme binalar için gerekli derz mesafesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Haziran 2021;27(3):281-289.
Chicago Kamal, Muhammet, ve Mehmet İnel. “Sismik çarpışma olasılığı Bulunan Betonarme Binalar için Gerekli Derz Mesafesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27, sy. 3 (Haziran 2021): 281-89.
EndNote Kamal M, İnel M (01 Haziran 2021) Sismik çarpışma olasılığı bulunan betonarme binalar için gerekli derz mesafesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27 3 281–289.
IEEE M. Kamal ve M. İnel, “Sismik çarpışma olasılığı bulunan betonarme binalar için gerekli derz mesafesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sy. 3, ss. 281–289, 2021.
ISNAD Kamal, Muhammet - İnel, Mehmet. “Sismik çarpışma olasılığı Bulunan Betonarme Binalar için Gerekli Derz Mesafesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27/3 (Haziran 2021), 281-289.
JAMA Kamal M, İnel M. Sismik çarpışma olasılığı bulunan betonarme binalar için gerekli derz mesafesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27:281–289.
MLA Kamal, Muhammet ve Mehmet İnel. “Sismik çarpışma olasılığı Bulunan Betonarme Binalar için Gerekli Derz Mesafesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sy. 3, 2021, ss. 281-9.
Vancouver Kamal M, İnel M. Sismik çarpışma olasılığı bulunan betonarme binalar için gerekli derz mesafesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27(3):281-9.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.