Research Article
BibTex RIS Cite

Elyaf takviye biçiminin polipropilen kompozitlerin kayma özelliklerine etkisinin araştırılması

Year 2021, Volume: 27 Issue: 4, 478 - 483, 20.08.2021

Abstract

Kompozit levha malzemelerin şekillendirilmesi sırasında meydana gelen en önemli hasarlardan birisi de kayma hasarıdır. Bu hasar mekanizmasının belirlenmesi için tabakalar arası kayma direnci incelenmektedir. Bu çalışmada, iki farklı kompozisyona sahip termoplastik kompozit levhalara kısa kiriş metoduyla eğme testi uygulanmıştır. Cam elyaf mimarisinin termoplastik kompozit levhaların kayma özellikleri üzerindeki etkilerinin incelenmesi amaçlanmıştır. Her iki tür kompozit levha da 3 mm kalınlıkta olup, matriks elemanı Polipropilen ve takviye elemanı cam elyaftır. Birinci malzemenin yapısında 0/90 dizilmiş ve %60 oranda sürekli elyaf bulunmaktadır. İkinci malzeme ise % 38 oranda hem kırpılmış hem de dokunmuş sürekli elyaf içermektedir. Farklı biçimlerde takviye elemanı içeren iki tür kompozit levhanın tabakalar arası kayma özellikleri karşılaştırılmıştır. Ayrıca, makro görüntüleme yapılarak hasar durumları incelenmiştir. Hibrit elyaf içeren kompozit levhanın kayma dayanımı, kütlece sürekli elyaf oranı fazla olan kompozit malzemeye göre daha yüksek çıkmıştır.

References

  • [1] Agarwal K, Kuchipudi SK, Girard B, Houser M. “Mechanical properties of fiber reinforced polymer composites: A comparative study of conventional and additive manufacturing methods”. Journal of Composite Materials, 52(23), 3173-3181, 2018.
  • [2] Dutra T, Ferreira R, Resende H. “Interlaminar shear strength of continuous carbon fiber reinforced thermoplastic composites manufactured by 3D printing”. 24th ABCM International Congress of Mechanical Engineering, Curitiba, Brazil, 3-8 December 2017.
  • [3] Mohsin MAA, Iannucci L, Greenhalgh ES. “Low-velocity impact performance of carbon fibre reinforced thermoplastic composites for automotive applications”. 21st International Conference on Composite Materials, Xi’an, China, 20-25 August 2017.
  • [4] Chen R, Liu X, Han L, Zhang Z, Li Y. “Morphology, thermal behavior, rheological, and mechanicalproperties of polypropylene/polystyrene blends based onelongation flow”. Polymers for Advanced Technologies, 31, 2722-2732, 2020.
  • [5] Kadlec M, Novakova L, Ruzek R. “An experimental investigation of factors considered for the short beam shear strength evaluation of carbon fiber-reinforced thermoplastic laminates”. Journal of Testing and Evaluation, 42B(3), 580-590, 2014.
  • [6] Zahid S, Nasir MA, Nauman S, Karahan M, Nawab Y, Ali HM, Khalid Y, Nabeel M, Ullah M. “Experimental analysis of ILSS of glass fibre reinforced thermoplastic and thermoset textile composites enhanced with multiwalled carbon nanotubes”. Journal of Mechanical Science and Technology, 33(1), 197-204, 2019.
  • [7] Demir ME, Çelik YH, Kılıçkap E. “Cam ve karbon elyaf takviyeli kompozitlerde elyaf cinsinin, yükün, kayma hızı ve mesafesinin abrasiv aşınmaya etkisi”. Journal of Polytechnic, 22(4), 811-817, 2019.
  • [8] Gauthier MM. Engineered Materials Handbook. Desk ed. First Printing. New York, USA, ASM International, 1995.
  • [9] Gürdal Z, Raphael T, Hajela P. Design and Optimization of laminated Composite Materials. 1st ed. New York, USA, Wiley Publishing, 1999.
  • [10] Alcock B, Cabrera NO, Barkoula NM, Peijs AAJM. “Direct forming of all-polypropylene composites products from fabrics made of co-extruded tapes”. Applied Composite Materials, 16, 117-134, 2009.
  • [11] Rajak DK, Pagar DD, Menezes PL, Linul E. “Fiber-reinforced polymer composites: manufacturing, properties, and applications”. Polymers, 11(10), 2-37, 2019.
  • [12] Friedrich K, Hou M. “On stamp forming of curved and flexible geometry components from continuous glass fiber/polypropylene composites”. Composites Part A: Applied Science and Manufacturing, 29(3), 217-226, 1998.
  • [13] Rosselli F, Santare MH. “Comparison of the short beam shear (SBS) and interlaminar shear device (ISD) tests”. Composites Part A: Applied Science and Manufacturing, 28(6), 587-594, 1997.
  • [14] Kim JK, Sham ML. “Impact and delamination failure of woven-fabric composites”. Composites Science and Technology, 60, 745-761, 2000.
  • [15] Dai S, Cunningham PR, Marshall S, Silva C. “Influence of fibre architecture on the tensile, compressive and flexural behaviour of 3D woven composites”. Composites Part A: Applied Science and Manufacturing, 69, 195-207, 2015.
  • [16] Sideridis E, Papadopoulos GA. “Short beam and three point bending tests for the study of shear and flexural properties in unidirectional fiber reinforced epoxy composites”. Journal of Applied Polymer Science, 93, 63-74, 2004.
  • [17] Liu C, Du D, Li H, Hu Y, Xu Y, Tian J, Tao G, Tao J. “Interlaminar failure behavior of GLARE laminates under short-beam three-point-bending load”. Composites Part B: Engineering, 97, 361-367, 2016.
  • [18] Yan W, Han KQ, Qin LL, Yu MH. “Study on long fiber–reinforced thermoplastic composites prepared by in situ solid‐state polycondensation”. Journal of Applied Polymer Science, 91, 3959-3965, 2004.
  • [19] Wang Y, Dong Q, Liu X. “Mode I interlaminar fracture behaviour of continuous glass fibre/polypropylene composites based on commingled yarn”. Polymers & Polymer Composites, 15(3), 229-239, 2007.
  • [20] Fan Z, Santare MH, Advani SG. “Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes”. Composites Part A: Applied Science and Manufacturing, 39(3), 540-554, 2008.
  • [21] Kumar KV, Safiulla M, Ahmed ANK. “An experimental evaluation of fiber reinforced polypropylene thermoplastics for aerospace applications”. Journal of Mechanical Engineering, 43(2), 92-97, 2013.
  • [22] Visweswaraiah SB, Lessard L, Hubert P. “Interlaminar shear behaviour of hybrid fibre architectures of randomly oriented strands combined with laminate groups”. Composite Structures, 176, 823-832, 2017.
  • [23] Huang C, He M, He Y, Xiao J, Zhang J, Ju S, Jiang D. “Exploration relation between interlaminar shear properties of thin-ply laminates under short-beam bending and meso-structures”. Journal of Composite Materials, 52(17), 2375-2386, 2017.
  • [24] Aisyah HA, Paridah MT, Khalina A, Sapuan SM, Wahab MS, Berkalp OB, Lee CH, Lee SH. “Effects of fabric counts and weave designs on the properties of laminated woven kenaf/carbon fibre reinforced epoxy hybrid composites”. Polymers, 10(1320), 1-19, 2018.
  • [25] Bilisik K, Karaduman N, Sapanci E. “Short-beam shear of nanoprepreg/nanostitched three-dimensional carbon/epoxy multiwall carbon nanotube composites”. Journal of Composite Materials, 54(3), 311-329, 2020.
  • [26] Awais H, Nawab Y, Anjang A, Md-Akil H, Abidin MSZ. “Effect of fabric architecture on the shear and impact properties of natural fibre reinforced composites”. Composites Part B: Engineering, 2020. https://doi.org/10.1016/j.compositesb.2020.108069.
  • [27] Yilmaz ND, Khan GMA. Flexural Behavior of Textile-Reinforced Polymer Composites. Editors: Jawaid M, Thariq NSM. Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, 13-42, Amsterdam, Netherlands, Woodhead Publishing, 2019.
  • [28] Adams DF. “Testing tech: the short beam shear test”. High Performance Composites, 14(4), 11-12, 2006.
  • [29] Keith WP, Kedward KT. “Shear damage mechanisms in a woven, nicalon‐reinforced ceramic‐matrix composite”. Journal of the American Ceramic Society, 80(2), 357-364, 2005.
  • [30] International Organization for Standardization. “Fibre-Reinforced Plastic Composites, Determination of Apparent Interlaminar Shear Strength by Short-Beam Method”. Geneva, Switzerland, 14130, 1997.
  • [31] Zhu J, Imam A, Crane R, Lozano K, Khabashesku VN, Barrera EV. “Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength”. Composites Science and Technology, 67, 1509-1517, 2007.
  • [32] Seyhan AT, Tanoglu M, Schulte K. “Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites”. Engineering Fracture Mechanics, 75, 5151-5162, 2008.
  • [33] Kumar C, Rawat P, Singh KK, Behera RP, Deep A. “Combined effect of loading rate and percentage by weight of MWCNTs on inter laminar shear strength (ILSS) and flexural strength of CFRP”. IOP Conf. Series: Materials Science and Engineering, 2018. https://doi:10.1088/1757-899X/377/1/012074.
  • [34] Lee J, Park SB, Lee JS, Kim JW. “Improvement in mechanical properties of glass fiber fabric/PVC composites with chopped glass fibers and coupling agent”. Materials Research Express, 2017. https://doi.org/10.1088/2053-1591/aa76fa.

Investigation on the effect of fiber reinforcement style on shear properties of polypropylene composites

Year 2021, Volume: 27 Issue: 4, 478 - 483, 20.08.2021

Abstract

One of the most important failures that occur during the forming of laminated composite materials is shear failure. Interlaminar shear strength is examined to determine this mechanism of damage. In this study, bending test via the short beam method was applied to thermoplastic composite laminates with two different compositions. It was aimed to analysis on the effects of the glass fiber architecture types on shear properties of the thermoplastic composite laminates. Both types of composite laminates have 3 mm thickness, the matrix element is Polypropylene and the reinforcing element is glass fiber. The first material has a fiber ratio of 60% and a continuous fiber stacked at 0/90 in its structure. The fiber content of the second material is 38% and it contains both chopped and woven continuous fiber. The interlayer shear properties of two kinds of composite laminates containing reinforcement elements in different types were compared. In addition, failure situations were examined by performing macro imaging. The shear strength of the composite laminate containing chopped fiber was higher than the composite material with high continuous fiber weight ratio.

References

  • [1] Agarwal K, Kuchipudi SK, Girard B, Houser M. “Mechanical properties of fiber reinforced polymer composites: A comparative study of conventional and additive manufacturing methods”. Journal of Composite Materials, 52(23), 3173-3181, 2018.
  • [2] Dutra T, Ferreira R, Resende H. “Interlaminar shear strength of continuous carbon fiber reinforced thermoplastic composites manufactured by 3D printing”. 24th ABCM International Congress of Mechanical Engineering, Curitiba, Brazil, 3-8 December 2017.
  • [3] Mohsin MAA, Iannucci L, Greenhalgh ES. “Low-velocity impact performance of carbon fibre reinforced thermoplastic composites for automotive applications”. 21st International Conference on Composite Materials, Xi’an, China, 20-25 August 2017.
  • [4] Chen R, Liu X, Han L, Zhang Z, Li Y. “Morphology, thermal behavior, rheological, and mechanicalproperties of polypropylene/polystyrene blends based onelongation flow”. Polymers for Advanced Technologies, 31, 2722-2732, 2020.
  • [5] Kadlec M, Novakova L, Ruzek R. “An experimental investigation of factors considered for the short beam shear strength evaluation of carbon fiber-reinforced thermoplastic laminates”. Journal of Testing and Evaluation, 42B(3), 580-590, 2014.
  • [6] Zahid S, Nasir MA, Nauman S, Karahan M, Nawab Y, Ali HM, Khalid Y, Nabeel M, Ullah M. “Experimental analysis of ILSS of glass fibre reinforced thermoplastic and thermoset textile composites enhanced with multiwalled carbon nanotubes”. Journal of Mechanical Science and Technology, 33(1), 197-204, 2019.
  • [7] Demir ME, Çelik YH, Kılıçkap E. “Cam ve karbon elyaf takviyeli kompozitlerde elyaf cinsinin, yükün, kayma hızı ve mesafesinin abrasiv aşınmaya etkisi”. Journal of Polytechnic, 22(4), 811-817, 2019.
  • [8] Gauthier MM. Engineered Materials Handbook. Desk ed. First Printing. New York, USA, ASM International, 1995.
  • [9] Gürdal Z, Raphael T, Hajela P. Design and Optimization of laminated Composite Materials. 1st ed. New York, USA, Wiley Publishing, 1999.
  • [10] Alcock B, Cabrera NO, Barkoula NM, Peijs AAJM. “Direct forming of all-polypropylene composites products from fabrics made of co-extruded tapes”. Applied Composite Materials, 16, 117-134, 2009.
  • [11] Rajak DK, Pagar DD, Menezes PL, Linul E. “Fiber-reinforced polymer composites: manufacturing, properties, and applications”. Polymers, 11(10), 2-37, 2019.
  • [12] Friedrich K, Hou M. “On stamp forming of curved and flexible geometry components from continuous glass fiber/polypropylene composites”. Composites Part A: Applied Science and Manufacturing, 29(3), 217-226, 1998.
  • [13] Rosselli F, Santare MH. “Comparison of the short beam shear (SBS) and interlaminar shear device (ISD) tests”. Composites Part A: Applied Science and Manufacturing, 28(6), 587-594, 1997.
  • [14] Kim JK, Sham ML. “Impact and delamination failure of woven-fabric composites”. Composites Science and Technology, 60, 745-761, 2000.
  • [15] Dai S, Cunningham PR, Marshall S, Silva C. “Influence of fibre architecture on the tensile, compressive and flexural behaviour of 3D woven composites”. Composites Part A: Applied Science and Manufacturing, 69, 195-207, 2015.
  • [16] Sideridis E, Papadopoulos GA. “Short beam and three point bending tests for the study of shear and flexural properties in unidirectional fiber reinforced epoxy composites”. Journal of Applied Polymer Science, 93, 63-74, 2004.
  • [17] Liu C, Du D, Li H, Hu Y, Xu Y, Tian J, Tao G, Tao J. “Interlaminar failure behavior of GLARE laminates under short-beam three-point-bending load”. Composites Part B: Engineering, 97, 361-367, 2016.
  • [18] Yan W, Han KQ, Qin LL, Yu MH. “Study on long fiber–reinforced thermoplastic composites prepared by in situ solid‐state polycondensation”. Journal of Applied Polymer Science, 91, 3959-3965, 2004.
  • [19] Wang Y, Dong Q, Liu X. “Mode I interlaminar fracture behaviour of continuous glass fibre/polypropylene composites based on commingled yarn”. Polymers & Polymer Composites, 15(3), 229-239, 2007.
  • [20] Fan Z, Santare MH, Advani SG. “Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes”. Composites Part A: Applied Science and Manufacturing, 39(3), 540-554, 2008.
  • [21] Kumar KV, Safiulla M, Ahmed ANK. “An experimental evaluation of fiber reinforced polypropylene thermoplastics for aerospace applications”. Journal of Mechanical Engineering, 43(2), 92-97, 2013.
  • [22] Visweswaraiah SB, Lessard L, Hubert P. “Interlaminar shear behaviour of hybrid fibre architectures of randomly oriented strands combined with laminate groups”. Composite Structures, 176, 823-832, 2017.
  • [23] Huang C, He M, He Y, Xiao J, Zhang J, Ju S, Jiang D. “Exploration relation between interlaminar shear properties of thin-ply laminates under short-beam bending and meso-structures”. Journal of Composite Materials, 52(17), 2375-2386, 2017.
  • [24] Aisyah HA, Paridah MT, Khalina A, Sapuan SM, Wahab MS, Berkalp OB, Lee CH, Lee SH. “Effects of fabric counts and weave designs on the properties of laminated woven kenaf/carbon fibre reinforced epoxy hybrid composites”. Polymers, 10(1320), 1-19, 2018.
  • [25] Bilisik K, Karaduman N, Sapanci E. “Short-beam shear of nanoprepreg/nanostitched three-dimensional carbon/epoxy multiwall carbon nanotube composites”. Journal of Composite Materials, 54(3), 311-329, 2020.
  • [26] Awais H, Nawab Y, Anjang A, Md-Akil H, Abidin MSZ. “Effect of fabric architecture on the shear and impact properties of natural fibre reinforced composites”. Composites Part B: Engineering, 2020. https://doi.org/10.1016/j.compositesb.2020.108069.
  • [27] Yilmaz ND, Khan GMA. Flexural Behavior of Textile-Reinforced Polymer Composites. Editors: Jawaid M, Thariq NSM. Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, 13-42, Amsterdam, Netherlands, Woodhead Publishing, 2019.
  • [28] Adams DF. “Testing tech: the short beam shear test”. High Performance Composites, 14(4), 11-12, 2006.
  • [29] Keith WP, Kedward KT. “Shear damage mechanisms in a woven, nicalon‐reinforced ceramic‐matrix composite”. Journal of the American Ceramic Society, 80(2), 357-364, 2005.
  • [30] International Organization for Standardization. “Fibre-Reinforced Plastic Composites, Determination of Apparent Interlaminar Shear Strength by Short-Beam Method”. Geneva, Switzerland, 14130, 1997.
  • [31] Zhu J, Imam A, Crane R, Lozano K, Khabashesku VN, Barrera EV. “Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength”. Composites Science and Technology, 67, 1509-1517, 2007.
  • [32] Seyhan AT, Tanoglu M, Schulte K. “Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites”. Engineering Fracture Mechanics, 75, 5151-5162, 2008.
  • [33] Kumar C, Rawat P, Singh KK, Behera RP, Deep A. “Combined effect of loading rate and percentage by weight of MWCNTs on inter laminar shear strength (ILSS) and flexural strength of CFRP”. IOP Conf. Series: Materials Science and Engineering, 2018. https://doi:10.1088/1757-899X/377/1/012074.
  • [34] Lee J, Park SB, Lee JS, Kim JW. “Improvement in mechanical properties of glass fiber fabric/PVC composites with chopped glass fibers and coupling agent”. Materials Research Express, 2017. https://doi.org/10.1088/2053-1591/aa76fa.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Abdullah Onur Özdemir This is me

Regaip Menkuc This is me

Cetin Karatas This is me

Publication Date August 20, 2021
Published in Issue Year 2021 Volume: 27 Issue: 4

Cite

APA Özdemir, A. O., Menkuc, R., & Karatas, C. (2021). Investigation on the effect of fiber reinforcement style on shear properties of polypropylene composites. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 478-483.
AMA Özdemir AO, Menkuc R, Karatas C. Investigation on the effect of fiber reinforcement style on shear properties of polypropylene composites. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. August 2021;27(4):478-483.
Chicago Özdemir, Abdullah Onur, Regaip Menkuc, and Cetin Karatas. “Investigation on the Effect of Fiber Reinforcement Style on Shear Properties of Polypropylene Composites”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27, no. 4 (August 2021): 478-83.
EndNote Özdemir AO, Menkuc R, Karatas C (August 1, 2021) Investigation on the effect of fiber reinforcement style on shear properties of polypropylene composites. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27 4 478–483.
IEEE A. O. Özdemir, R. Menkuc, and C. Karatas, “Investigation on the effect of fiber reinforcement style on shear properties of polypropylene composites”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 27, no. 4, pp. 478–483, 2021.
ISNAD Özdemir, Abdullah Onur et al. “Investigation on the Effect of Fiber Reinforcement Style on Shear Properties of Polypropylene Composites”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27/4 (August 2021), 478-483.
JAMA Özdemir AO, Menkuc R, Karatas C. Investigation on the effect of fiber reinforcement style on shear properties of polypropylene composites. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27:478–483.
MLA Özdemir, Abdullah Onur et al. “Investigation on the Effect of Fiber Reinforcement Style on Shear Properties of Polypropylene Composites”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 27, no. 4, 2021, pp. 478-83.
Vancouver Özdemir AO, Menkuc R, Karatas C. Investigation on the effect of fiber reinforcement style on shear properties of polypropylene composites. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27(4):478-83.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif