Araştırma Makalesi
BibTex RIS Kaynak Göster

Düz ve rijit cisim ile temas halindeki elastik kiriş dizininin konstrüksiyonel parametrelerinin sürtünme kuvvetine etkisinin incelenmesi

Yıl 2022, Cilt: 28 Sayı: 1, 9 - 17, 28.02.2022

Öz

Günümüzde yüzey desenleme, temasta olan iki cisim arası temas kuvvetlerinin düzenlenmesinde önemli bir yöntem haline gelmiştir. Yüzey desenleme işlemi genellikle elastik silindirik kirişler kullanılarak yapılır. Bu çalışmada, elastik kiriş dizininin konstrüksiyonel parametrelerinin; kiriş dizininin düz, pürüzsüz ve rijit bir cisim ile arasındaki sürtünme kuvvet genliğine etkisi sonlu-elemanlar metodu ile incelenmiştir. Bunun için, elastik silindirik kiriş dizinlerinin sürtünmeli hareketi sonlu-elemanlar tabanlı mühendislik programında oluşturulmuştur. Oluşturulan modelin doğrulanması gerçekleştirilmiştir. Bu modelde elastik kiriş dizinindeki destek katman kalınlığı, iki kiriş arası uzaklık ve kiriş sayısı değiştirilmiştir. Düz ve rijit bir cisim ile temasta olan kirişlerin tam-kaymalı sürtünmeli hareketindeki normal ve sürtünme kuvvet genlikleri hesaplanmıştır. İki kiriş arası uzaklık ya da kiriş destek katman kalınlığı arttırıldığında sürtünme kuvvet genliğinde azalma meydana gelmekte olup; kiriş sayısının tek bir kiriş başına düşen sürtünme kuvvet genliğine etkisi ihmal edilebilir seviyededir

Kaynakça

  • [1] Singer IL. “Friction and energy dissipation at the atomic scale: A review”. Journal of Vacuum Science & Technology A: Vacuum, Surfaces and Film, 12(5), 2605-2616, 1994.
  • [2] Park JY, Salmeron M. “Fundamental aspects of energy dissipation in friction”. Chemical Reviews, 114(1), 677-711, 2014.
  • [3] Hu R, Krylov SY, Frenken JW. “On the origin of frictional energy dissipation”. Tribology Letters, 68(8), 1-13, 2020.
  • [4] Neville A, Morina A, Haque T, Voong M. “Compatibility between tribological surfaces and lubricant additives-how friction and wear reduction can be controlled by surface/lube synergies”. Tribology international, 40(10-12), 1680-1695, 2007.
  • [5] Wong VW, Tung SC. “Overview of automotive engine friction and reduction trends-Effects of surface, material, and lubricant-additive technologies”. Friction, 4(1), 1-28, 2016.
  • [6] Ali A, Kamal M, Xianjun H, Essa FA, Abdelkareem MA, Elagouz A, Sharshir SW. “Friction and wear reduction mechanisms of the reciprocating contact interfaces using nanolubricant under different loads and speeds”. Journal of Tribology, 2018. https://doi.org/10.1115/1.4039720
  • [7] Etsion I. “Improving tribological performance of mechanical components by laser surface texturing”. Tribology Letters, 17(4), 733-737, 2004.
  • [8] Etsion I. Surface texturing for in-cylinder friction reduction. Editor: Rahnejat H. Tribology and Dynamics of Engine and Powertrain: Fundamentals, Applications and Future Trends, 458-469, Cambridge, UK, Woodhead Publishing, 2010.
  • [9] Wang ZW, Chen MW, Wu JW, Zheng HH, Zheng XF. “A review of surface texture of tribological interfaces”. In Applied Mechanics and Materials, 37, 41-45, 2010.
  • [10] Tang W, Zhou Y, Zhu H, Yang H. “The effect of surface texturing on reducing the friction and wear of steel under lubricated sliding contact”. Applied Surface Science, 273, 199-204, 2013.
  • [11] Hsu SM, Jing Y, Hua D, Zhang H. “Friction reduction using discrete surface textures: principle and design”. Journal of Physics D: Applied Physics, 2014. https://doi.org/10.1088/0022-3727/47/33/335307
  • [12] Baharin AFS, Ghazali MJ, Wahab JA. “Laser surface texturing and its contribution to friction and wear reduction: a brief review”. Industrial Lubrication and Tribology, 68(1), 57-66, 2016.
  • [13] Gachot C, Rosenkranz A, Hsu SM, Costa HL. “A critical assessment of surface texturing for friction and wear improvement”. Wear, 372, 21-41, 2017.
  • [14] Murphy MP, Aksak B, Sitti M. “Adhesion and anisotropic friction enhancements of angled heterogeneous microfiber arrays with spherical and spatula tips”. Journal of Adhesion Science and Technology, 21(12-13), 1281-1296, 2007.
  • [15] Kim S, Aksak B, Sitti M. “Enhanced friction of elastomer microfiber adhesives with spatulate tips”. Applied Physics Letters, 2007. https://doi.org/10.1063/1.2820755
  • [16] He B, Chen W, Wang QJ. “Surface texture effect on friction of a microtextured poly (dimethylsiloxane) (PDMS)”. Tribology Letters, 31(3), 187-197, 2008.
  • [17] Kramer RK, Majidi C, Wood RJ. “Shear‐Mode Contact Splitting for a Microtextured Elastomer Film”. Advanced Materials, 22(33), 3700-3703, 2010.
  • [18] Murarash B, Itovich Y, Varenberg M. “Tuning elastomer friction by hexagonal surface patterning”. Soft Matter, 7(12), 5553-5557, 2011.
  • [19] Brörmann K, Barel I, Urbakh M, Bennewitz R. “Friction on a microstructured elastomer surface”. Tribology Letters, 50(1), 3-15, 2013.
  • [20] Greiner C, del Campo A, Arzt E. “Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload”. Langmuir, 23(7), 3495-3502, 2007.
  • [21] Aksak B, Hui CY, Sitti M. “The effect of aspect ratio on adhesion and stiffness for soft elastic fibres”. Journal of The Royal Society Interface, 8(61), 1166-1175, 2011.
  • [22] Eray T, Sümer B, Koç İM. “Analytical and experimental analysis on frictional dynamics of a single elastomeric pillar”. Tribology International, 100, 293-305, 2016.
  • [23] Kim S, Sitti M, Hui CY, Long R, Jagota A. “Effect of backing layer thickness on adhesion of single-level elastomer fiber arrays”. Applied Physics Letters, 91(16), 161905-161907, 2007.
  • [24] Booth JA, Bacca M, McMeeking RM, Foster KL. “Benefit of backing‐layer compliance in fibrillar adhesive patchesresistance to peel propagation in the presence of ınterfacial misalignment”. Advanced Materials Interfaces, 2018. https://doi.org/10.1002/admi.201800272
  • [25] Bacca M, Booth JA, Turner KL, McMeeking RM. “Load sharing in bioinspired fibrillar adhesives with backing layer interactions and interfacial misalignment”. Journal of the Mechanics and Physics of Solids, 96, 428-444, 2016.
  • [26] Koç İM, Akça E. “Design of a piezoelectric based tactile sensor with bio-inspired micro/nano-pillars”. Tribology International, 59, 321-331, 2013.
  • [27] Degrandi-Contraires E, Poulard C, Restagno F, Léger L. “Sliding friction at soft micropatterned elastomer interfaces”. Faraday Discussions, 156(1), 255-265, 2012.
  • [28] Koç İM, Eray T. “Modeling frictional dynamics of a viscoelastic pillar rubbed on a smooth surface”. Tribology International, 127, 187-199, 2018.
  • [29] Maugis D. Contact, Adhesion and Rupture of Elastic Solids. 1st ed. Berlin, Germany, Springer, 2000.
  • [30] Johnson KL. Contact Mechanics. 1st ed. Cambridge, UK, Cambridge University Press, 1985.
  • [31] Timoshenko S, Goodier JN. Theoy of Elasticity. 3rd ed, New York, USA, McGraw-Hill, 1987.
  • [32] Su Y, Hou X, Jiang S, Li M, Liu Y, Chen W. “A study of the microstructure modification of a space crawling robot adhesive feet based on discrete element method”. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019. https://doi.org/10.1007/s40430-019- 2043-x
  • [33] Kim S, Spenko M, Trujillo S, Heyneman B, Santon D, Cutkosky MR. “Smooth vertical surface climbing with directional adhesion”. IEEE Transactions on Robotics, 24(1), 65-74, 2008.

Investigation of the effect of structural parameters of elastic beam array in contact with smooth and rigid body on friction force

Yıl 2022, Cilt: 28 Sayı: 1, 9 - 17, 28.02.2022

Öz

Nowadays, surface texturing becomes a significant method in the regulation of contact forces between two bodies in contact. Surface texturing is generally carried out by using elastic cylindrical beams. In this study, the effect of elastic beam array structural parameters on friction force amplitude of beams in contact with a flat, smooth and rigid body are investigated by finite-element method. For this, the frictional motion of the elastic cylindrical beam array is modeled in a finite-element based engineering software. Validation of the established model is performed. In the model, backing layer thickness, spacing distance between two beams, and number of beams are changed in elastic beam array. Normal force and friction force amplitudes in the full-sliding frictional motion of beams in contact with a smooth and rigid body are calculated. When the spacing distance between the two beams or the beam backing layer thickness is increased, the friction force amplitude decreases; and the effect of the number of beams on the friction force amplitude per single beam is negligible.

Kaynakça

  • [1] Singer IL. “Friction and energy dissipation at the atomic scale: A review”. Journal of Vacuum Science & Technology A: Vacuum, Surfaces and Film, 12(5), 2605-2616, 1994.
  • [2] Park JY, Salmeron M. “Fundamental aspects of energy dissipation in friction”. Chemical Reviews, 114(1), 677-711, 2014.
  • [3] Hu R, Krylov SY, Frenken JW. “On the origin of frictional energy dissipation”. Tribology Letters, 68(8), 1-13, 2020.
  • [4] Neville A, Morina A, Haque T, Voong M. “Compatibility between tribological surfaces and lubricant additives-how friction and wear reduction can be controlled by surface/lube synergies”. Tribology international, 40(10-12), 1680-1695, 2007.
  • [5] Wong VW, Tung SC. “Overview of automotive engine friction and reduction trends-Effects of surface, material, and lubricant-additive technologies”. Friction, 4(1), 1-28, 2016.
  • [6] Ali A, Kamal M, Xianjun H, Essa FA, Abdelkareem MA, Elagouz A, Sharshir SW. “Friction and wear reduction mechanisms of the reciprocating contact interfaces using nanolubricant under different loads and speeds”. Journal of Tribology, 2018. https://doi.org/10.1115/1.4039720
  • [7] Etsion I. “Improving tribological performance of mechanical components by laser surface texturing”. Tribology Letters, 17(4), 733-737, 2004.
  • [8] Etsion I. Surface texturing for in-cylinder friction reduction. Editor: Rahnejat H. Tribology and Dynamics of Engine and Powertrain: Fundamentals, Applications and Future Trends, 458-469, Cambridge, UK, Woodhead Publishing, 2010.
  • [9] Wang ZW, Chen MW, Wu JW, Zheng HH, Zheng XF. “A review of surface texture of tribological interfaces”. In Applied Mechanics and Materials, 37, 41-45, 2010.
  • [10] Tang W, Zhou Y, Zhu H, Yang H. “The effect of surface texturing on reducing the friction and wear of steel under lubricated sliding contact”. Applied Surface Science, 273, 199-204, 2013.
  • [11] Hsu SM, Jing Y, Hua D, Zhang H. “Friction reduction using discrete surface textures: principle and design”. Journal of Physics D: Applied Physics, 2014. https://doi.org/10.1088/0022-3727/47/33/335307
  • [12] Baharin AFS, Ghazali MJ, Wahab JA. “Laser surface texturing and its contribution to friction and wear reduction: a brief review”. Industrial Lubrication and Tribology, 68(1), 57-66, 2016.
  • [13] Gachot C, Rosenkranz A, Hsu SM, Costa HL. “A critical assessment of surface texturing for friction and wear improvement”. Wear, 372, 21-41, 2017.
  • [14] Murphy MP, Aksak B, Sitti M. “Adhesion and anisotropic friction enhancements of angled heterogeneous microfiber arrays with spherical and spatula tips”. Journal of Adhesion Science and Technology, 21(12-13), 1281-1296, 2007.
  • [15] Kim S, Aksak B, Sitti M. “Enhanced friction of elastomer microfiber adhesives with spatulate tips”. Applied Physics Letters, 2007. https://doi.org/10.1063/1.2820755
  • [16] He B, Chen W, Wang QJ. “Surface texture effect on friction of a microtextured poly (dimethylsiloxane) (PDMS)”. Tribology Letters, 31(3), 187-197, 2008.
  • [17] Kramer RK, Majidi C, Wood RJ. “Shear‐Mode Contact Splitting for a Microtextured Elastomer Film”. Advanced Materials, 22(33), 3700-3703, 2010.
  • [18] Murarash B, Itovich Y, Varenberg M. “Tuning elastomer friction by hexagonal surface patterning”. Soft Matter, 7(12), 5553-5557, 2011.
  • [19] Brörmann K, Barel I, Urbakh M, Bennewitz R. “Friction on a microstructured elastomer surface”. Tribology Letters, 50(1), 3-15, 2013.
  • [20] Greiner C, del Campo A, Arzt E. “Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload”. Langmuir, 23(7), 3495-3502, 2007.
  • [21] Aksak B, Hui CY, Sitti M. “The effect of aspect ratio on adhesion and stiffness for soft elastic fibres”. Journal of The Royal Society Interface, 8(61), 1166-1175, 2011.
  • [22] Eray T, Sümer B, Koç İM. “Analytical and experimental analysis on frictional dynamics of a single elastomeric pillar”. Tribology International, 100, 293-305, 2016.
  • [23] Kim S, Sitti M, Hui CY, Long R, Jagota A. “Effect of backing layer thickness on adhesion of single-level elastomer fiber arrays”. Applied Physics Letters, 91(16), 161905-161907, 2007.
  • [24] Booth JA, Bacca M, McMeeking RM, Foster KL. “Benefit of backing‐layer compliance in fibrillar adhesive patchesresistance to peel propagation in the presence of ınterfacial misalignment”. Advanced Materials Interfaces, 2018. https://doi.org/10.1002/admi.201800272
  • [25] Bacca M, Booth JA, Turner KL, McMeeking RM. “Load sharing in bioinspired fibrillar adhesives with backing layer interactions and interfacial misalignment”. Journal of the Mechanics and Physics of Solids, 96, 428-444, 2016.
  • [26] Koç İM, Akça E. “Design of a piezoelectric based tactile sensor with bio-inspired micro/nano-pillars”. Tribology International, 59, 321-331, 2013.
  • [27] Degrandi-Contraires E, Poulard C, Restagno F, Léger L. “Sliding friction at soft micropatterned elastomer interfaces”. Faraday Discussions, 156(1), 255-265, 2012.
  • [28] Koç İM, Eray T. “Modeling frictional dynamics of a viscoelastic pillar rubbed on a smooth surface”. Tribology International, 127, 187-199, 2018.
  • [29] Maugis D. Contact, Adhesion and Rupture of Elastic Solids. 1st ed. Berlin, Germany, Springer, 2000.
  • [30] Johnson KL. Contact Mechanics. 1st ed. Cambridge, UK, Cambridge University Press, 1985.
  • [31] Timoshenko S, Goodier JN. Theoy of Elasticity. 3rd ed, New York, USA, McGraw-Hill, 1987.
  • [32] Su Y, Hou X, Jiang S, Li M, Liu Y, Chen W. “A study of the microstructure modification of a space crawling robot adhesive feet based on discrete element method”. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019. https://doi.org/10.1007/s40430-019- 2043-x
  • [33] Kim S, Spenko M, Trujillo S, Heyneman B, Santon D, Cutkosky MR. “Smooth vertical surface climbing with directional adhesion”. IEEE Transactions on Robotics, 24(1), 65-74, 2008.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makine Müh. / Endüstri Müh.
Yazarlar

Turgay Eray Bu kişi benim

Yayımlanma Tarihi 28 Şubat 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 28 Sayı: 1

Kaynak Göster

APA Eray, T. (2022). Düz ve rijit cisim ile temas halindeki elastik kiriş dizininin konstrüksiyonel parametrelerinin sürtünme kuvvetine etkisinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(1), 9-17.
AMA Eray T. Düz ve rijit cisim ile temas halindeki elastik kiriş dizininin konstrüksiyonel parametrelerinin sürtünme kuvvetine etkisinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Şubat 2022;28(1):9-17.
Chicago Eray, Turgay. “Düz Ve Rijit Cisim Ile Temas Halindeki Elastik Kiriş Dizininin konstrüksiyonel Parametrelerinin sürtünme Kuvvetine Etkisinin Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, sy. 1 (Şubat 2022): 9-17.
EndNote Eray T (01 Şubat 2022) Düz ve rijit cisim ile temas halindeki elastik kiriş dizininin konstrüksiyonel parametrelerinin sürtünme kuvvetine etkisinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28 1 9–17.
IEEE T. Eray, “Düz ve rijit cisim ile temas halindeki elastik kiriş dizininin konstrüksiyonel parametrelerinin sürtünme kuvvetine etkisinin incelenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 1, ss. 9–17, 2022.
ISNAD Eray, Turgay. “Düz Ve Rijit Cisim Ile Temas Halindeki Elastik Kiriş Dizininin konstrüksiyonel Parametrelerinin sürtünme Kuvvetine Etkisinin Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/1 (Şubat 2022), 9-17.
JAMA Eray T. Düz ve rijit cisim ile temas halindeki elastik kiriş dizininin konstrüksiyonel parametrelerinin sürtünme kuvvetine etkisinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28:9–17.
MLA Eray, Turgay. “Düz Ve Rijit Cisim Ile Temas Halindeki Elastik Kiriş Dizininin konstrüksiyonel Parametrelerinin sürtünme Kuvvetine Etkisinin Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 1, 2022, ss. 9-17.
Vancouver Eray T. Düz ve rijit cisim ile temas halindeki elastik kiriş dizininin konstrüksiyonel parametrelerinin sürtünme kuvvetine etkisinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28(1):9-17.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.