Research Article
BibTex RIS Cite

CaCO3 ve SiO2 nano parçacıkların reçineye ilavesi ile cam elyaf kompozit malzemelerin mukavemeti

Year 2022, Volume: 28 Issue: 4, 493 - 498, 31.08.2022

Abstract

Bu çalışmada, CaCO3 ve SiO2 nano parçacıkların E-Cam elyaf kompozit malzemelerin çekme dayanımı üzerindeki etkileri araştırılmıştır. Kompozit plakalar, CaCO3 nano parçacıkların ağırlıkça %3, %5 ve%10, SiO2 nano parçacıkların ağırlıkça %1, %3 ve%5 oranında epoksi reçineye karıştırılmasıyla üretilmiştir. Yüksek nano parçacık oranları, tozların geniş çapından ve daha koyu bir reçine oluşturma arzusundan kaynaklanmaktadır. Ek olarak, tek yönlü elyaf sayısında azalma olması durumunda nano katkı maddelerinin reçineye dahil edilmesini vurgulamak için farklı elyaf oryantasyonları kullanılmıştır. ASTM D3039 Standartlarına göre hazırlanan numuneler tek eksenli çekme test cihazı, Instron 8801 ile test edilmiştir. Taramalı elektron mikroskobu analizler yapılarak hasarların liflerin bağlarının ayrılması ve kümelenmesi ve elyaf/matris bozulması olarak gerçekleştiği görülmüştür. CaCO3 ve SiO2 nano parçacıkların dahil edilmesi, cam elyaf kompozit sandviç yapıların dayanımını arttırmıştır. Farklı oranlarda takviye edilmiş optimum nano parçacık miktarı CaCO3 için%3 ve SiO2 için%1 olarak belirlenmiştir. Yeterli nano parçacık ilavesi, fiber ve matrisler arasındaki yapışma kalitesini geliştirmiştir. Nano parçacık katkı maddelerinin E-Cam elyaf kompozit malzemelere dahil edilmesi önemli bir etkiye sahipti ve matrisin yapışma özelliklerini olumlu yönde etkilemiştir.

References

  • [1] Barre S, Chotard T, Benzeggagh M. “Comparative study of strain rate effects on mechanical properties of glass fibrereinforced thermoset matrix composite”. Composites Part A Applied Sciences and Manufacturing, 27(12), 1169-1181, 1996.
  • [2] Bledzki AK, Mamun AA, Faruk O. “Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites”. Express Polymer Letters, 1, 755-762, 2007.
  • [3] Mukhopadhyay SS, Fangueiro RR, Yusuf A. “Banana fibers -variability and fracture behaviour”. Journal of Engineered Fiber and Fabrics, 3, 1-7, 2008.
  • [4] Plueddemann EP. Silane Coupling Agents. 2nd ed. Boston, MA, USA, Springer, 1991.
  • [5] Ishida H. “A review of recent progress in the studies of molecular and microstructure of coupling agents and their functions in composites, coatings and adhesive joints”. Polymer Composites, 5(2), 101-123, 1984.
  • [6] Suzuki N, Ishida H. “A review on the structure and characterization techniques of silane/matrix interphases”. In Macromolecular Symposia. Basel: Hüthig & Wepf Verlag, 108(1), 19-53, 1996.
  • [7] Dibenedetto AT, Lex PJ. “Evaluation of surface treatments for glass fibers in composite materials”. Polymer Engineering and Science, 29(8), 543-555, 1989.
  • [8] Hamada H, Ikuta N, Nishida N, Maekawa Z. “Effect of interfacial silane network structure on interfacial strength in glass fibre composites”. Composites, 25(7), 512-515, 1994.
  • [9] Ishida H. Controlled Interphases in Composites Materials. 1nd ed. New York, USA, Elsevier, 1990.
  • [10] Wang D, Jones FR. “ToF‐SIMS and XPS studies of the interaction of silanes and matrix resins with glass surfaces”. Surface and interface analysis, 20(5), 457-467, 1993.
  • [11] Rostamiyan Y, Hamed MA, Salman KA. “Optimization of mechanical properties of epoxy-based hybrid nanocomposite: effect of using nano silica and high-impact polystyrene by mixture design approach”. Material and Design, 156, 1068-77, 2014.
  • [12] Alexander M, Dubois P. “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials”. Materials Science & Engineering, 28, 1-63, 2000.
  • [13] Qin H, Zhang S, Zhao C, Hu G, Yang M. Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene. Polymer, 46(19), 8386-8395, 2005.
  • [14] Lagaly G. “Introduction: from clay mineral-polymer interactions to clay mineral polymer nanocomposites”. Applied Clay Science, 15, 1-9, 1999.
  • [15] Wang Z, Pinnavaia T. “Hybrid organic-inorganic nanocomposites: exfoliation of magadiite nanolayers in an elastomeric epoxy”. Chemistry of Materials, 10, 1820-1826, 1998.
  • [16] M. Ekrem, “The effects of carbon nanotubes added polyvinyl alcohol nanofibers on mechanical properties of carbon reinforced composite laminates”. Indian Academy of Sciences, 44, 179-187, 2019.
  • [17] LeBaron P. “Polymer-layered silicate nanocomposites: an overview”. Applied Clay Science, 15(1-2), 11-29, 1999.
  • [18] Wetzel B, Haupert F, Zhang, MQ. “Epoxy nanocomposites with high mechanical and tribological performance”. Composites Science and Technology, 63, 2055-2067, 2003.
  • [19] Imanaka M, Takeuchi Y, Nakamura Y, Nishimura A, Iida T. “Fracture toughness of spherical silica-filled epoxy adhesives”. International journal of adhesion and adhesives, 21(5), 389-396, 2001.
  • [20] M. Ekrem, “Hexagonal Boron Nitride Nanoplates-Nano Ag/Epoxy Composites: Production, Mechanical and Thermal Properties”. El-Cezerî Journal of Science and Engineering, 6(3), 585-593, 2019.
  • [21] Mallick K. Fibre Reinforced Composites: Materials, Manufacturing and Design. 2nd ed. New York, USA, CRC Press, 1993.
  • [22] Cox HL. “The elasticity and strength of paper and other fibrous materials”. British Journal of Applied Physics, 3(3), 72-79, 1952.
  • [23] Fu S. “Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiberreinforced polymers”. Composites Science and Technology, 56(10), 1179-1190, 1996.
  • [24] Christy A, Purohit R, Rana RS, Singh SK, Rana S. “Development and analysis of epoxy/nano SiO2 polymer matrix composite fabricated by ultrasonic vibration assisted processing”. Materials Today: Proceedings, 4(2), 2748-2754, 2017.
  • [25] Pedrazzoli D, Pegoretti A. “Silica nanoparticles as coupling agents for polypropylene/glass composites”. Composites Science and Technology, 76, 77-83, 2013.
  • [26] Shafiur Rahman GM, Aftab H, Shariful Islam M, Mukhlish MZB, Ali F. “Enhanced physico-mechanical properties of polyester resin film using CaCO3 filler”. Fibers and Polymers, 17(1), 59-65, 2016.
  • [27] Kiehl J, Huser J, Bistac S, Delaite C. “Influence of fillers content on the viscosity of unsaturated polyester resin/calcium carbonate blends”. Journal of Composite Materials, 46(16), 1937-1942, 2012.
  • [28] Abdi A, Eslami-Farsani R, Khosravi H. “Evaluating the mechanical behavior of basalt fibers/epoxy composites containing surface-modified CaCO3 nanoparticles”. Fibers and Polymers, 19(3), 635-640, 2018.
  • [29] Rong Z, Sun W, Xiao H, Jiang G. “Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites”. Cement and Concrete Composites, 56, 25-31, 2015.
  • [30] Paliwal, MK and Sachin KC. “An experimental investigation of tensile strength of glass composite materials with calcium carbonate (CaCO3) filler”. International Journal of Emerging trends in Engineering and Development, 2, 303-309, 2012.
  • [31] Borkar S, Kumar S, Mantha, S. “Effect of silica and calcium carbonate fillers on the properties of woven glass fibre composites”. Materials Science, 32(2), 251-253, 2007.
  • [32] Baskaran R, Sarojadevi M, Vijayakumar CT. “Mechanical and thermal properties of unsaturated polyester/calcium carbonate nanocomposites”. Journal of Reinforced Plastics and Composites, 30(18), 1549-1556, 2011.
  • [33] Tuncer C. “The effect of CACO3, SIO2 and graphene nanoparticle addition on the mechanical properties of glass fiber composite materials”. Master’s Thesis, Pamukkale University, Denizli, Turkey, 2018.
  • [34] American Society for Testing and Materials. “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials”. Pennsylvania, USA, D3039, 2014.

The strength of glass fiber composite materials by inclusion of CaCO3 and SiO2 nanoparticles into resin

Year 2022, Volume: 28 Issue: 4, 493 - 498, 31.08.2022

Abstract

In this study, the effects of CaCO3 and SiO2 nanoparticles on tensile strength of E-Glass fiber composite materials were investigated. Composite structures were produced by mixing CaCO3 nanoparticles into 3%, 5% and 10% by weight, SiO2 nanoparticles into 1%, 3% and 5% by weight epoxy resin. High nanoparticle rates are due to the large diameter of the powders and the desire to form a darker resin. In addition, different fiber orientations were used to emphasize inclusion of nano-additive materials into the resin in case of a decrease in the number of unidirectional fibers. Samples prepared according to the ASTM D3039 Standards were tested by uniaxial tensile machine, Instron 8801. Scanning electron microscopy analysis were performed and failure was mainly caused by debonding and clumping of fibers and fiber/matrix failure. An inclusion of CaCO3 and SiO2 nanoparticles improved the strength of the glass fiber composite sandwich structures. The optimum amount of nano-particles supplemented with different ratios were determined as 3% for CaCO3 and 1% for SiO2. Sufficient enough nanoparticles inclusion increased the quality of the adhesion between fiber and matrices. The inclusion of nanoparticle additives in E-Glass fiber composite materials had a significant effect and positively affected the adhesion properties of the matrix.

References

  • [1] Barre S, Chotard T, Benzeggagh M. “Comparative study of strain rate effects on mechanical properties of glass fibrereinforced thermoset matrix composite”. Composites Part A Applied Sciences and Manufacturing, 27(12), 1169-1181, 1996.
  • [2] Bledzki AK, Mamun AA, Faruk O. “Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites”. Express Polymer Letters, 1, 755-762, 2007.
  • [3] Mukhopadhyay SS, Fangueiro RR, Yusuf A. “Banana fibers -variability and fracture behaviour”. Journal of Engineered Fiber and Fabrics, 3, 1-7, 2008.
  • [4] Plueddemann EP. Silane Coupling Agents. 2nd ed. Boston, MA, USA, Springer, 1991.
  • [5] Ishida H. “A review of recent progress in the studies of molecular and microstructure of coupling agents and their functions in composites, coatings and adhesive joints”. Polymer Composites, 5(2), 101-123, 1984.
  • [6] Suzuki N, Ishida H. “A review on the structure and characterization techniques of silane/matrix interphases”. In Macromolecular Symposia. Basel: Hüthig & Wepf Verlag, 108(1), 19-53, 1996.
  • [7] Dibenedetto AT, Lex PJ. “Evaluation of surface treatments for glass fibers in composite materials”. Polymer Engineering and Science, 29(8), 543-555, 1989.
  • [8] Hamada H, Ikuta N, Nishida N, Maekawa Z. “Effect of interfacial silane network structure on interfacial strength in glass fibre composites”. Composites, 25(7), 512-515, 1994.
  • [9] Ishida H. Controlled Interphases in Composites Materials. 1nd ed. New York, USA, Elsevier, 1990.
  • [10] Wang D, Jones FR. “ToF‐SIMS and XPS studies of the interaction of silanes and matrix resins with glass surfaces”. Surface and interface analysis, 20(5), 457-467, 1993.
  • [11] Rostamiyan Y, Hamed MA, Salman KA. “Optimization of mechanical properties of epoxy-based hybrid nanocomposite: effect of using nano silica and high-impact polystyrene by mixture design approach”. Material and Design, 156, 1068-77, 2014.
  • [12] Alexander M, Dubois P. “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials”. Materials Science & Engineering, 28, 1-63, 2000.
  • [13] Qin H, Zhang S, Zhao C, Hu G, Yang M. Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene. Polymer, 46(19), 8386-8395, 2005.
  • [14] Lagaly G. “Introduction: from clay mineral-polymer interactions to clay mineral polymer nanocomposites”. Applied Clay Science, 15, 1-9, 1999.
  • [15] Wang Z, Pinnavaia T. “Hybrid organic-inorganic nanocomposites: exfoliation of magadiite nanolayers in an elastomeric epoxy”. Chemistry of Materials, 10, 1820-1826, 1998.
  • [16] M. Ekrem, “The effects of carbon nanotubes added polyvinyl alcohol nanofibers on mechanical properties of carbon reinforced composite laminates”. Indian Academy of Sciences, 44, 179-187, 2019.
  • [17] LeBaron P. “Polymer-layered silicate nanocomposites: an overview”. Applied Clay Science, 15(1-2), 11-29, 1999.
  • [18] Wetzel B, Haupert F, Zhang, MQ. “Epoxy nanocomposites with high mechanical and tribological performance”. Composites Science and Technology, 63, 2055-2067, 2003.
  • [19] Imanaka M, Takeuchi Y, Nakamura Y, Nishimura A, Iida T. “Fracture toughness of spherical silica-filled epoxy adhesives”. International journal of adhesion and adhesives, 21(5), 389-396, 2001.
  • [20] M. Ekrem, “Hexagonal Boron Nitride Nanoplates-Nano Ag/Epoxy Composites: Production, Mechanical and Thermal Properties”. El-Cezerî Journal of Science and Engineering, 6(3), 585-593, 2019.
  • [21] Mallick K. Fibre Reinforced Composites: Materials, Manufacturing and Design. 2nd ed. New York, USA, CRC Press, 1993.
  • [22] Cox HL. “The elasticity and strength of paper and other fibrous materials”. British Journal of Applied Physics, 3(3), 72-79, 1952.
  • [23] Fu S. “Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiberreinforced polymers”. Composites Science and Technology, 56(10), 1179-1190, 1996.
  • [24] Christy A, Purohit R, Rana RS, Singh SK, Rana S. “Development and analysis of epoxy/nano SiO2 polymer matrix composite fabricated by ultrasonic vibration assisted processing”. Materials Today: Proceedings, 4(2), 2748-2754, 2017.
  • [25] Pedrazzoli D, Pegoretti A. “Silica nanoparticles as coupling agents for polypropylene/glass composites”. Composites Science and Technology, 76, 77-83, 2013.
  • [26] Shafiur Rahman GM, Aftab H, Shariful Islam M, Mukhlish MZB, Ali F. “Enhanced physico-mechanical properties of polyester resin film using CaCO3 filler”. Fibers and Polymers, 17(1), 59-65, 2016.
  • [27] Kiehl J, Huser J, Bistac S, Delaite C. “Influence of fillers content on the viscosity of unsaturated polyester resin/calcium carbonate blends”. Journal of Composite Materials, 46(16), 1937-1942, 2012.
  • [28] Abdi A, Eslami-Farsani R, Khosravi H. “Evaluating the mechanical behavior of basalt fibers/epoxy composites containing surface-modified CaCO3 nanoparticles”. Fibers and Polymers, 19(3), 635-640, 2018.
  • [29] Rong Z, Sun W, Xiao H, Jiang G. “Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites”. Cement and Concrete Composites, 56, 25-31, 2015.
  • [30] Paliwal, MK and Sachin KC. “An experimental investigation of tensile strength of glass composite materials with calcium carbonate (CaCO3) filler”. International Journal of Emerging trends in Engineering and Development, 2, 303-309, 2012.
  • [31] Borkar S, Kumar S, Mantha, S. “Effect of silica and calcium carbonate fillers on the properties of woven glass fibre composites”. Materials Science, 32(2), 251-253, 2007.
  • [32] Baskaran R, Sarojadevi M, Vijayakumar CT. “Mechanical and thermal properties of unsaturated polyester/calcium carbonate nanocomposites”. Journal of Reinforced Plastics and Composites, 30(18), 1549-1556, 2011.
  • [33] Tuncer C. “The effect of CACO3, SIO2 and graphene nanoparticle addition on the mechanical properties of glass fiber composite materials”. Master’s Thesis, Pamukkale University, Denizli, Turkey, 2018.
  • [34] American Society for Testing and Materials. “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials”. Pennsylvania, USA, D3039, 2014.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makine Müh. / Endüstri Müh.
Authors

Can Tuncer This is me

Olcay Ersel Canyurt This is me

Publication Date August 31, 2022
Published in Issue Year 2022 Volume: 28 Issue: 4

Cite

APA Tuncer, C., & Canyurt, O. E. (2022). The strength of glass fiber composite materials by inclusion of CaCO3 and SiO2 nanoparticles into resin. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 493-498.
AMA Tuncer C, Canyurt OE. The strength of glass fiber composite materials by inclusion of CaCO3 and SiO2 nanoparticles into resin. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. August 2022;28(4):493-498.
Chicago Tuncer, Can, and Olcay Ersel Canyurt. “The Strength of Glass Fiber Composite Materials by Inclusion of CaCO3 and SiO2 Nanoparticles into Resin”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, no. 4 (August 2022): 493-98.
EndNote Tuncer C, Canyurt OE (August 1, 2022) The strength of glass fiber composite materials by inclusion of CaCO3 and SiO2 nanoparticles into resin. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28 4 493–498.
IEEE C. Tuncer and O. E. Canyurt, “The strength of glass fiber composite materials by inclusion of CaCO3 and SiO2 nanoparticles into resin”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 28, no. 4, pp. 493–498, 2022.
ISNAD Tuncer, Can - Canyurt, Olcay Ersel. “The Strength of Glass Fiber Composite Materials by Inclusion of CaCO3 and SiO2 Nanoparticles into Resin”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/4 (August 2022), 493-498.
JAMA Tuncer C, Canyurt OE. The strength of glass fiber composite materials by inclusion of CaCO3 and SiO2 nanoparticles into resin. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28:493–498.
MLA Tuncer, Can and Olcay Ersel Canyurt. “The Strength of Glass Fiber Composite Materials by Inclusion of CaCO3 and SiO2 Nanoparticles into Resin”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 28, no. 4, 2022, pp. 493-8.
Vancouver Tuncer C, Canyurt OE. The strength of glass fiber composite materials by inclusion of CaCO3 and SiO2 nanoparticles into resin. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28(4):493-8.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif