Araştırma Makalesi
BibTex RIS Kaynak Göster

Çoklu-analit algılama amacıyla pasta-şeklinde fotonik kristal fiber bazlı yüzey plazmon rezonans algılayıcı

Yıl 2022, Cilt: 28 Sayı: 5, 652 - 660, 31.10.2022

Öz

Bu çalışmada çoklu-analit algılama amacıyla, çift analit kanallı, fotonik kristal fiber (FKF) tabanlı yüzey plazmon rezonans (YPR) algılayıcı tasarlanmıştır. Plazmonik materyal olarak altın ve gümüş kullanılmıştır. Sayısal analizler Tam Vektörel-Sonlu Öge Yöntemi (TV-SÖY) kullanılarak yapılmıştır, ayrıca tasarlanan algılayıcı duyarlılık hesapları için spektral yöntemi kullanılmıştır. Sayısal analizler sonucu, en yüksek 6800 nm/RIU duyarlılığa ve 1.47x10-5 RIU çözünürlüğe ulaşılırken, sabit ve değişken analit kırılma indisleri için sırasıyla 3500 nm/RIU ve 3100 nm/RIU duyarlılık seviyelerine ulaşılmıştır.

Kaynakça

  • [1] Zhao Y, Deng ZQ, Li J. “Photonic crystal fiber based surface plasmon resonance chemical sensors”. Sensors and Actuators B: Chemical, 202, 557-567, 2014.
  • [2] Lin Y, Zou Y, Lindquist RG. “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing”. Biomedical optics express, 2(3), 478-484, 2011.
  • [3] Chen H, Hou Y, Ye Z, Wang H, Koh K, Shen Z, Shu Y. “Labelfree surface plasmon resonance cytosensor for breast cancer cell detection based on nano-conjuğation of monodisperse magnetic nanoparticle and folic acid”. Sensors and Actuators B: Chemical, 201, 433-438, 2014.
  • [4] Otto A. “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection”. Zeitschrift für Physik A Hadrons and nuclei, 216(4), 398-410, 1968.
  • [5] Kretschmann E, Raether H. “Radiative decay of non radiative surface plasmons excited by light”. Zeitschrift für Naturforschung A, 23(12), 2135-2136, 1968.
  • [6] Hasan MR, Akter S, Rifat AA, Rana S, Ahmed K, Ahmed R, Subbaraman H, Abbott D. “Spiral photonic crystal fiberbased dual-polarized surface plasmon resonance biosensor”. IEEE Sensors Journal, 18(1), 133-140, 2017.
  • [7] Jorgenson R, Yee S. “A fiber-optic chemical sensor based on surface plasmon resonance”. Sensors and Actuators B: Chemical, 12(3), 213-220, 1993.
  • [8] Knight J, Birks T, Russell PSJ, Atkin D. “All-silica singlemode optical fiber with photonic crystal cladding”. Optics Letters, 21(19), 1547-1549, 1996.
  • [9] Hassani A, Skoroboğatiy M.“Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics”. Optics Express, 14(24), 11616-11621, 2006.
  • [10] Wong WC, Chan CC, Boo JL, Teo ZY, Tou ZQ, Yang HB, Li CM, Leong KC. “Photonic crystal fiber surface plasmon resonance biosensor based on protein g immobilization”. IEEE Journal of Selected Topics in Quantum Electronics, 19(3), 1-7, 2013.
  • [11] Yasli A, Ademgil H. “Effect of plasmonic materials on photonic crystal fiber based surface plasmon resonance sensors”. Modern Physics Letters B, 33(13), 1-15, 2019.
  • [12] Dhar GB, Roli V, Kumar SS. Fiber Optic Sensors Based on Plasmonics. 1st ed. Singapore, World Scientific, 2015.
  • [13] Akowuah EK, Gorman T, Ademgil H, Haxha S, Robinson GK, Oliver JV. “Numerical analysis of a photonic crystal fiber for biosensing applications”. IEEE Journal of Quantum Electronics, 48(11), 1403-1410, 2012.
  • [14] Dash JN, Jha R. “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance”. IEEE Photonics Technology Letters, 26(11), 1092-1095, 2014.
  • [15] Dash JN, Jha R. “On the performance of graphene-based d-shaped photonic crystal fibre biosensor using surface plasmon resonance”. Plasmonics, 10(5), 1123-1131, 2015.
  • [16] Hameed MFO, Alrayk YK, Shaalan AA, El Deeb WS, Obayya SS. “Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor”. Journal of Nanophotonics, 10(4), 1-15, 2016.
  • [17] Yasli A, Ademgil H, Haxha S. “D-shaped photonic crystal fiber based surface plasmon resonance sensor”. IEEE 2018 26th Signal Processing and Communications Applications Conference, İzmir, Turkey, 2-5 May 2018.
  • [18] Liu C, Wang F, Zheng S, Sun T, Lv J, Liu Q, Yang L, Mu H, Chu PK.“Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor”. Journal of Modern Optics, 63(12), 1189-1195, 2016.
  • [19] Rifat AA, Mahdiraji GA, Ahmed R, Chow DM, Sua Y, Shee Y, Adikan FM. “Copper-graphene-based photonic crystal fiber plasmonic biosensor”. IEEE Photonics Journal, 8(1), 1-8, 2016.
  • [20] Hasan MR, Akter S, Rifat AA, Rana S, Ali S. “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance”. Photonics, 4(1), 1-11, 2017.
  • [21] Dash JN, Das R, Jha R. “Azo coated microchannel incorporated pcf-based spr sensor: A numerical analysis”. IEEE Photonics Technology Letters, 30(11), 1032-1035, 2018.
  • [22] Vala M, Chadt K, Piliarik M, Homola J. “High-performance compact spr sensor for multi-analyte sensing”. Sensors and Actuators B: Chemical, 148(2), 544-549, 2010.
  • [23] Zhang Y, Zhou C, Xia L, Yu X, Liu D. “Wagon wheel fiber based multichannel plasmonic sensor”. Optics express, 19(23), 22863-22873, 2011.
  • [24] Otupiri R, Akowuah EK, Haxha S. “Multi-channel spr biosensor based on pcf for multi-analyte sensing applications”. Optics express, 23(12), 15716-15727, 2015.
  • [25] Azzam SI, Hameed MFO, Shehata REA, Heikal A, Obayya SS. “Multichannel photonic crystal fiber surface plasmon resonance based sensor”. Optical and Quantum Electronics, 48(2), 1-11, 2016.
  • [26] Kaur V, Singh S. “A dual-channel surface plasmon resonance biosensor based on a photonic crystal fiber for multianalyte sensing”. Journal of Computational Electronics, 18(1), 319-328, 2019.
  • [27] Lu M, Peng W, Liu Q, Liu Y, Li L, Liang Y, Masson JF. “Dual channel multilayercoated surface plasmon resonance sensor for dual refractive index range measurements”. Optics express, 25(8), 8563-8570, 2017.
  • [28] Prabhakar G, Peer A, Kumar A, Rastoği V. “Finite element analysis of solid-core photonic crystal fiber”. IEEE 2012 Students Conference on Engineering and Systems, Allahabad, India, 16-18 March 2012.
  • [29] Dickinson EJ, Ekström H, Fontes E. “Comsol multiphysics R: Finite element software for electrochemical analysis. a mini-review”. Electrochemistry communications, 40, 71-74, 2014.
  • [30] Li W, Chen D, Qinling Z. “Large-mode-area single modeoutput Neodymium-doped silicate glass all-solid photonic crystal fiber”. Scientific Reports, 5(1), 1-5, 2015.
  • [31] Shevchenko YY, Albert J. “Plasmon resonances in goldcoated tilted fiber bragg gratings”. Optics letters, 32(3), 211-213, 2007.
  • [32] Philipp H, Palik ED. Handbook of Optical Constants of Solids. 1st ed. New York, USA, Academic Press, 1985.
  • [33] Anders Bjarklev ASB, Broeng J. Photonic Crystal Fibres. 1st ed. Massachusetts, USA, Kluwer Academic Publishers, 2003.
  • [34] Hao C, Lu Y, Wang M, Wu B, Duan L, Yao J. “Surface plasmon resonance refractive index sensor based on active photonic crystal fiber”. IEEE Photonics Journal, 5(6), 1-9, 2013.
  • [35] Liu C, Yang L, Su W, Wang F, Sun T, Liu Q, Mu H, Chu PK. “Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel”. Optics Communications, 382, 162-166, 2017.
  • [36] Klantsataya E, Jia P, Ebendorff-Heidepriem H, Monro TM, François A. “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends”. Sensors, 17(1), 1-23, 2016.
  • [37] Ferrell, Richard A. "Predicted radiation of plasma oscillations in metal films" Physical Review, 111(5), 1214-1222,1958.
  • [38] Li L, Zhang X, Liang Y, Guang J, Peng W.“Dual-channel fiber surface plasmon resonance bioloğical sensor based on a hybrid interroğation of intensity and wavelength modulation” Journal of Biomedical Optics, 21(12), 1-6, 2016.
  • [39] Kaur V, Singh S. “Performance analysis of multichannel surface plasmon resonance sensor with dual coating of conducting metal oxide”. Journal of Nanophotonics, 12(1), 1-14, 2018.
  • [40] Yasli A, Ademgil H. “Multianalyte sensing analysis with multilayer photonic crystal fiber-based surface plasmon resonance sensor”. Modern Physics Letters B, 34(33), 1-13, 2020.
  • [41] Caucheteur C, Guo T, Albert J. “Review of plasmonic fiber optic biochemical sensors: Improving the limit of detection”. Analytical Bioanalytical Chemistry, 407(14), 3883-3897, 2015.
  • [42] Rifat A, Ahmed R, Yetisen AK, Hutt H, Sabouri A, Mahdiraji GA, Yun SH, Mahamd Adikan FR. “Photonic crystal fiber based plasmonic sensors”. Sensors and Actuators B: Chemical, 243, 311-325, 2017.
  • [43] Rifat A, Mahdiraji GA, Sua Y, Shee Y, Ahmed R, Chow DM, Adikan FM. “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach”. IEEE Photonics Technology Letters, 27(15), 1628-1631, 2015.
  • [44] Yajima T, Yamamoto J, Ishii F, Hirooka T, Yoshida M, Nakazawa M. “Low-loss photonic crystal fiber fabricated by a slurry casting method”. Optics Express, 21(25), 30500-30506, 2013.
  • [45] Takeyasu N, Tanaka T, Kawata S. “Metal deposition deep into microstructure by electroless plating”. Japanese journal of applied physics, 44(8), 1134-1137, 2005.
  • [46] Harrington JA. “A review of ir transmitting, hollow waveguides”. Fiber & Integrated Optics, 19(3), 211-227, 2000.

Pie-Shaped photonic crystal fiber based surface plasmon resonance sensor for multi-analyte sensing purposes

Yıl 2022, Cilt: 28 Sayı: 5, 652 - 660, 31.10.2022

Öz

In this study, the dual-channel photonic crystal fibre (PCF) based surface plasmon resonance (SPR) sensor has been proposed to sense multi-analyte. Gold and silver used as plasmonic layers. Full vectorial Finite Element Method (FV-FEM) have been used to perform numerical analysis. Also, the spectral interrogation method has been used to calculate the sensitivity of the proposed sensor structure. According to numerical results, the highest sensitivity levels are obtained as 6800 nm/RIU with 1.47x10−5 RIU, where the average sensitivities are calculated as 3500 nm/RIU and 3100 nm/RIU for fixed and variable refractive indices, respectively.

Kaynakça

  • [1] Zhao Y, Deng ZQ, Li J. “Photonic crystal fiber based surface plasmon resonance chemical sensors”. Sensors and Actuators B: Chemical, 202, 557-567, 2014.
  • [2] Lin Y, Zou Y, Lindquist RG. “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing”. Biomedical optics express, 2(3), 478-484, 2011.
  • [3] Chen H, Hou Y, Ye Z, Wang H, Koh K, Shen Z, Shu Y. “Labelfree surface plasmon resonance cytosensor for breast cancer cell detection based on nano-conjuğation of monodisperse magnetic nanoparticle and folic acid”. Sensors and Actuators B: Chemical, 201, 433-438, 2014.
  • [4] Otto A. “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection”. Zeitschrift für Physik A Hadrons and nuclei, 216(4), 398-410, 1968.
  • [5] Kretschmann E, Raether H. “Radiative decay of non radiative surface plasmons excited by light”. Zeitschrift für Naturforschung A, 23(12), 2135-2136, 1968.
  • [6] Hasan MR, Akter S, Rifat AA, Rana S, Ahmed K, Ahmed R, Subbaraman H, Abbott D. “Spiral photonic crystal fiberbased dual-polarized surface plasmon resonance biosensor”. IEEE Sensors Journal, 18(1), 133-140, 2017.
  • [7] Jorgenson R, Yee S. “A fiber-optic chemical sensor based on surface plasmon resonance”. Sensors and Actuators B: Chemical, 12(3), 213-220, 1993.
  • [8] Knight J, Birks T, Russell PSJ, Atkin D. “All-silica singlemode optical fiber with photonic crystal cladding”. Optics Letters, 21(19), 1547-1549, 1996.
  • [9] Hassani A, Skoroboğatiy M.“Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics”. Optics Express, 14(24), 11616-11621, 2006.
  • [10] Wong WC, Chan CC, Boo JL, Teo ZY, Tou ZQ, Yang HB, Li CM, Leong KC. “Photonic crystal fiber surface plasmon resonance biosensor based on protein g immobilization”. IEEE Journal of Selected Topics in Quantum Electronics, 19(3), 1-7, 2013.
  • [11] Yasli A, Ademgil H. “Effect of plasmonic materials on photonic crystal fiber based surface plasmon resonance sensors”. Modern Physics Letters B, 33(13), 1-15, 2019.
  • [12] Dhar GB, Roli V, Kumar SS. Fiber Optic Sensors Based on Plasmonics. 1st ed. Singapore, World Scientific, 2015.
  • [13] Akowuah EK, Gorman T, Ademgil H, Haxha S, Robinson GK, Oliver JV. “Numerical analysis of a photonic crystal fiber for biosensing applications”. IEEE Journal of Quantum Electronics, 48(11), 1403-1410, 2012.
  • [14] Dash JN, Jha R. “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance”. IEEE Photonics Technology Letters, 26(11), 1092-1095, 2014.
  • [15] Dash JN, Jha R. “On the performance of graphene-based d-shaped photonic crystal fibre biosensor using surface plasmon resonance”. Plasmonics, 10(5), 1123-1131, 2015.
  • [16] Hameed MFO, Alrayk YK, Shaalan AA, El Deeb WS, Obayya SS. “Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor”. Journal of Nanophotonics, 10(4), 1-15, 2016.
  • [17] Yasli A, Ademgil H, Haxha S. “D-shaped photonic crystal fiber based surface plasmon resonance sensor”. IEEE 2018 26th Signal Processing and Communications Applications Conference, İzmir, Turkey, 2-5 May 2018.
  • [18] Liu C, Wang F, Zheng S, Sun T, Lv J, Liu Q, Yang L, Mu H, Chu PK.“Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor”. Journal of Modern Optics, 63(12), 1189-1195, 2016.
  • [19] Rifat AA, Mahdiraji GA, Ahmed R, Chow DM, Sua Y, Shee Y, Adikan FM. “Copper-graphene-based photonic crystal fiber plasmonic biosensor”. IEEE Photonics Journal, 8(1), 1-8, 2016.
  • [20] Hasan MR, Akter S, Rifat AA, Rana S, Ali S. “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance”. Photonics, 4(1), 1-11, 2017.
  • [21] Dash JN, Das R, Jha R. “Azo coated microchannel incorporated pcf-based spr sensor: A numerical analysis”. IEEE Photonics Technology Letters, 30(11), 1032-1035, 2018.
  • [22] Vala M, Chadt K, Piliarik M, Homola J. “High-performance compact spr sensor for multi-analyte sensing”. Sensors and Actuators B: Chemical, 148(2), 544-549, 2010.
  • [23] Zhang Y, Zhou C, Xia L, Yu X, Liu D. “Wagon wheel fiber based multichannel plasmonic sensor”. Optics express, 19(23), 22863-22873, 2011.
  • [24] Otupiri R, Akowuah EK, Haxha S. “Multi-channel spr biosensor based on pcf for multi-analyte sensing applications”. Optics express, 23(12), 15716-15727, 2015.
  • [25] Azzam SI, Hameed MFO, Shehata REA, Heikal A, Obayya SS. “Multichannel photonic crystal fiber surface plasmon resonance based sensor”. Optical and Quantum Electronics, 48(2), 1-11, 2016.
  • [26] Kaur V, Singh S. “A dual-channel surface plasmon resonance biosensor based on a photonic crystal fiber for multianalyte sensing”. Journal of Computational Electronics, 18(1), 319-328, 2019.
  • [27] Lu M, Peng W, Liu Q, Liu Y, Li L, Liang Y, Masson JF. “Dual channel multilayercoated surface plasmon resonance sensor for dual refractive index range measurements”. Optics express, 25(8), 8563-8570, 2017.
  • [28] Prabhakar G, Peer A, Kumar A, Rastoği V. “Finite element analysis of solid-core photonic crystal fiber”. IEEE 2012 Students Conference on Engineering and Systems, Allahabad, India, 16-18 March 2012.
  • [29] Dickinson EJ, Ekström H, Fontes E. “Comsol multiphysics R: Finite element software for electrochemical analysis. a mini-review”. Electrochemistry communications, 40, 71-74, 2014.
  • [30] Li W, Chen D, Qinling Z. “Large-mode-area single modeoutput Neodymium-doped silicate glass all-solid photonic crystal fiber”. Scientific Reports, 5(1), 1-5, 2015.
  • [31] Shevchenko YY, Albert J. “Plasmon resonances in goldcoated tilted fiber bragg gratings”. Optics letters, 32(3), 211-213, 2007.
  • [32] Philipp H, Palik ED. Handbook of Optical Constants of Solids. 1st ed. New York, USA, Academic Press, 1985.
  • [33] Anders Bjarklev ASB, Broeng J. Photonic Crystal Fibres. 1st ed. Massachusetts, USA, Kluwer Academic Publishers, 2003.
  • [34] Hao C, Lu Y, Wang M, Wu B, Duan L, Yao J. “Surface plasmon resonance refractive index sensor based on active photonic crystal fiber”. IEEE Photonics Journal, 5(6), 1-9, 2013.
  • [35] Liu C, Yang L, Su W, Wang F, Sun T, Liu Q, Mu H, Chu PK. “Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel”. Optics Communications, 382, 162-166, 2017.
  • [36] Klantsataya E, Jia P, Ebendorff-Heidepriem H, Monro TM, François A. “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends”. Sensors, 17(1), 1-23, 2016.
  • [37] Ferrell, Richard A. "Predicted radiation of plasma oscillations in metal films" Physical Review, 111(5), 1214-1222,1958.
  • [38] Li L, Zhang X, Liang Y, Guang J, Peng W.“Dual-channel fiber surface plasmon resonance bioloğical sensor based on a hybrid interroğation of intensity and wavelength modulation” Journal of Biomedical Optics, 21(12), 1-6, 2016.
  • [39] Kaur V, Singh S. “Performance analysis of multichannel surface plasmon resonance sensor with dual coating of conducting metal oxide”. Journal of Nanophotonics, 12(1), 1-14, 2018.
  • [40] Yasli A, Ademgil H. “Multianalyte sensing analysis with multilayer photonic crystal fiber-based surface plasmon resonance sensor”. Modern Physics Letters B, 34(33), 1-13, 2020.
  • [41] Caucheteur C, Guo T, Albert J. “Review of plasmonic fiber optic biochemical sensors: Improving the limit of detection”. Analytical Bioanalytical Chemistry, 407(14), 3883-3897, 2015.
  • [42] Rifat A, Ahmed R, Yetisen AK, Hutt H, Sabouri A, Mahdiraji GA, Yun SH, Mahamd Adikan FR. “Photonic crystal fiber based plasmonic sensors”. Sensors and Actuators B: Chemical, 243, 311-325, 2017.
  • [43] Rifat A, Mahdiraji GA, Sua Y, Shee Y, Ahmed R, Chow DM, Adikan FM. “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach”. IEEE Photonics Technology Letters, 27(15), 1628-1631, 2015.
  • [44] Yajima T, Yamamoto J, Ishii F, Hirooka T, Yoshida M, Nakazawa M. “Low-loss photonic crystal fiber fabricated by a slurry casting method”. Optics Express, 21(25), 30500-30506, 2013.
  • [45] Takeyasu N, Tanaka T, Kawata S. “Metal deposition deep into microstructure by electroless plating”. Japanese journal of applied physics, 44(8), 1134-1137, 2005.
  • [46] Harrington JA. “A review of ir transmitting, hollow waveguides”. Fiber & Integrated Optics, 19(3), 211-227, 2000.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Elektrik Elektornik Müh. / Bilgisayar Müh.
Yazarlar

Ahmet Yaslı Bu kişi benim

Hüseyin Ademgil Bu kişi benim

Yayımlanma Tarihi 31 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 28 Sayı: 5

Kaynak Göster

APA Yaslı, A., & Ademgil, H. (2022). Çoklu-analit algılama amacıyla pasta-şeklinde fotonik kristal fiber bazlı yüzey plazmon rezonans algılayıcı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(5), 652-660.
AMA Yaslı A, Ademgil H. Çoklu-analit algılama amacıyla pasta-şeklinde fotonik kristal fiber bazlı yüzey plazmon rezonans algılayıcı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ekim 2022;28(5):652-660.
Chicago Yaslı, Ahmet, ve Hüseyin Ademgil. “Çoklu-Analit algılama amacıyla Pasta-şeklinde Fotonik Kristal Fiber Bazlı yüzey Plazmon Rezonans algılayıcı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, sy. 5 (Ekim 2022): 652-60.
EndNote Yaslı A, Ademgil H (01 Ekim 2022) Çoklu-analit algılama amacıyla pasta-şeklinde fotonik kristal fiber bazlı yüzey plazmon rezonans algılayıcı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28 5 652–660.
IEEE A. Yaslı ve H. Ademgil, “Çoklu-analit algılama amacıyla pasta-şeklinde fotonik kristal fiber bazlı yüzey plazmon rezonans algılayıcı”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 5, ss. 652–660, 2022.
ISNAD Yaslı, Ahmet - Ademgil, Hüseyin. “Çoklu-Analit algılama amacıyla Pasta-şeklinde Fotonik Kristal Fiber Bazlı yüzey Plazmon Rezonans algılayıcı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/5 (Ekim 2022), 652-660.
JAMA Yaslı A, Ademgil H. Çoklu-analit algılama amacıyla pasta-şeklinde fotonik kristal fiber bazlı yüzey plazmon rezonans algılayıcı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28:652–660.
MLA Yaslı, Ahmet ve Hüseyin Ademgil. “Çoklu-Analit algılama amacıyla Pasta-şeklinde Fotonik Kristal Fiber Bazlı yüzey Plazmon Rezonans algılayıcı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 5, 2022, ss. 652-60.
Vancouver Yaslı A, Ademgil H. Çoklu-analit algılama amacıyla pasta-şeklinde fotonik kristal fiber bazlı yüzey plazmon rezonans algılayıcı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28(5):652-60.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.