Research Article
BibTex RIS Cite

Karbon bazlı dezenfeksiyon yan ürünlerinin çoklu maruziyet yolları için kanser risklerinin değerlendirilmesi: Isparta içme suyu

Year 2022, Volume: 28 Issue: 6, 901 - 911, 30.11.2022

Abstract

Dezenfeksiyon yan ürünleri (DYÜ), öncül maddeler ve dezenfektanlar arasındaki reaksiyonlar sonucu oluşan mutajenik ve karsinojenik bileşiklerdir. Bu çalışma kapsamında, Isparta içme suyu dağıtım sisteminden bir yıl boyunca aylık olarak alınan numunelerde trihalometanlar (THM) ve haloasetik asitlerin (HAA) konsantrasyonlarının ve türleşmelerinin belirlenmesinin yanı sıra, yutma, dermal absorpsiyon ve inhalasyon yolları ile karbon bazlı DYÜ’lerden kaynaklanan yaşam boyu toplam kanser riskleri hesaplanmıştır. THM konsantrasyonu 24-57 µg/L aralığında, HAA konsantrasyonları ise 12-36 µg/L aralığında değişim göstermiştir. Çok yollu maruziyet dikkate alınarak hesaplanan en yüksek ortalama toplam kanser risk değeri erkekler için 8.3E-05 ve kadınlar için ise 8.1E-05’tir. THM kanser riskine en yüksek katkıyı inhalasyon (ortalama %62), ardından yutma (ortalama %27) ve en düşük katkıyı dermal (ortalama %11) maruziyet oluşturmaktadır. Isparta içme suyu dağıtım sisteminde, THM için hesaplanan kanser risk değerleri, Amerika Birleşik Devletleri Çevre Koruma Teşkilatı (USEPA)’nın belirlediği ihmal edilebilir risk değerinden (1E-06) kadınlar için 81, erkekler için ise 83 kat daha fazladır. HAA için çoklu maruziyet yollarından kaynaklı ortalama toplam kanser riski erkeklerde ve kadınlarda sırasıyla 3.3E-05 ve 4.4E-05’dir. HAA için, ortalama toplam yaşam boyu kanser risk değerleri USEPA’nın belirlediği ihmal edilebilir risk değerinden kadınlar için 44, erkekler için 33 kat daha fazladır.

References

  • [1] Stalter D, O’Malley E, von Gunten U, Escher BI. “Mixture effects of drinking water disinfection by-products: implications for risk assessment”. Environmental Science.: Water Research § Technology, 6(9), 2341-2351, 2020.
  • [2] Fakıoğlu M, Karpuzcu ME, Öztürk İ. “İçme sularında alg kaynaklı tat ve koku sorununun değerlendirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(6), 1141-1156, 2018.
  • [3] Alkhatib E, Peters R. “Wet weather impact on trihalomethane formation potential in tributaries to drinking water reservoirs”. Environmental Monitoring Assessment, 139(1-3), 173-181, 2008.
  • [4] Liu ZQ, Shah AD, Salhi E, Bolotin J, von Gunten U. “Formation of brominated trihalomethanes during chlorination or ozonation of natural organic matter extracts and model compounds in saline water”. Water Research, 143, 492-502, 2018.
  • [5] Andersson A, Ashiq MJ, Shoeb M, Karlsson S, Bastviken D, Kylin H. “Evaluating gas chromatography with a halogenspecific detector for the determination of disinfection byproducts in drinking water”. Environmental Science and Pollution Research, 26(8), 7305-7314, 2018.
  • [6] Kargaki S, Iakovides M, Stephanou EG. “Study of the occurrence and multi-pathway health risk assessment of regulated and unregulated disinfection by-products in drinking and swimming pool waters of Mediterranean cities”. Science of the Total Environment, 739, 1-16, 2020.
  • [7] Blatchley ER, Margetas D, Duggirala R. “Copper catalysis in chloroform formation during water chlorination”. Water Research, 37(18), 4385-4394, 2003.
  • [8] Richardson SD, Ternes TA. “Water analysis: emerging contaminants and current issues”. Analytical Chemistry, 86(6), 2813-2848, 2014.
  • [9] Wang Y, Zhu G, Engel B. “Health risk assessment of trihalomethanes in water treatment plants in Jiangsu Province”. Ecotoxicology and Environmental Safety, 170(2), 346-354, 2009.
  • [10] Matamoros V, Mujeriego R, Bayona JM. “Trihalomethane occurrence in chlorinated reclaimed water at full-scale wastewater treatment plants in NE Spain”. Water Research, 41(15), 3337-3344, 2007.
  • [11] World Health Organization. “Guidelines for DrinkingWater Quality: Fourth Edition Incorporating the First Addendum”. Geneva, Switzerland, Licence, CC BY-NC-SA 3.0 IGO, 2017.
  • [12] Van Veldhoven K, Keski-Rahkonen P, Barupal DK, Villanueva CM, Font-Ribera L, Scalbert A, Bodinier B, Grimalt JO, Zwiener C, Vlaanderen J. “Effects of exposure to water disinfection by-products in a swimming pool: a metabolome-wide association study”. Environmental International, 111, 60-70, 2018.
  • [13] Fakhri Y, Mohseni-Bandpei A, Oliveri Conti G, Keramati H, Zandsalimi Y, Amanidaz N, Hosseini Pouya R, Moradi B, Bahmani Z, Rasouli Amirhajeloo L, Baninameh Z. “Health risk assessment induced by chloroform content of the drinking water in Iran: systematic review”. Toxin Reviewers, 36(4), 342-351, 2017.
  • [14] Mohammadi A, Faraji M, Ebrahimi AA, Nemati S, Abdolahnejad A, Miri M. “Comparing THMs level in old and new water distribution systems; seasonal variation and probabilistic risk assessment”. Ecotoxicology and Environmental Safety, 192, 1-7, 2020.
  • [15] Carter RAA, Joll CA. “Occurrence and formation of disinfection by-products in the swimming pool environment: A critical review”. Journal of Environmental Science (China), 58, 19-50, 2017.
  • [16] Peng F, Peng J, Li H, Li Y, Wang B, Yang Z. “Health risks and predictive modeling of disinfection byproducts in swimming pools”. Environment International, 139, 105726, 2020.
  • [17] Kujlu R, Mahdavianpour M, Ghanbari F. “Multi-route human health risk assessment from trihalomethanes in drinking and non-drinking water in Abadan, Iran”. Environmental Science and Pollution Research, 27, 42621–42630 2020.
  • [18] Xu X, Weisel CP. “Inhalation exposure to haloacetic acids and haloketones during showering”. Environmental Science Technology, 37(3), 569-576, 2003.
  • [19] Pan S, An Wei, Li H, Su M, Zhang J, Yang M. “Cancer risk assessment on trihalomethanes and haloacetic acids indrinking water of China using disability-adjusted life years”. Journal of Hazardous Materials, 280, 288-294, 2014.
  • [20] Tokmak B, Capar G, Dilek FB, Yetis U. “Trihalomethanes and associated potential cancer risks in the water supply in Ankara, Turkey”. Environmental Research, 96(3), 345-352, 2004.
  • [21] Uyak V. “Multi-pathway risk assessment of trihalomethanes exposure in Istanbul drinking water supplies”. Environment International, 32(1), 12-21, 2006.
  • [22] Aslan S, Turkman A. Cancer Risk Assessment in Drinking Water of Izmir, Turkey. Editors: Mothersill C, Mosse I, Seymour C. Multiple Stressors: A Challenge for the Future. NATO Science for Peace and Security Series. 381-389, Frankfurt, Germany, Springer, Dordrecht, 2007.
  • [23] Genisoglu M, Ergi-Kaytmaz C, Sofuoğlu SC. “Multi-RouteMulti-Pathway exposure to trihalomethanes and associated cumulative health risks with response and dose addition”. Journal of Environmental Management, 233, 823-831, 2019.
  • [24] Baytak D, Sofuoğlu A, Inal F, Sofuoglu SC. “Seasonal variation in drinking water concentrations of disinfection by-products in Izmir and associated human health risks”. Science of Total Environment, 407(1), 286-296, 2008.
  • [25] Has M. Sakarya İli Şebeke Suyunda trihalometan Miktarının Belirlenmesi ve Risk Analizi. Yüksek Lisans Tezi, Sakarya Üniversitesi, Sakarya, Türkiye, 2019.
  • [26] Ates N, Kaplan-Bekaroglu SS, Dadaser-Celik F. “Spatial/Temporal distribution and multi-pathway cancer risk assessment of trihalomethanes in low TOC and high bromide groundwater”. Environmental Science: Processes Impacts, 22, 2276-2290, 2020.
  • [27] United States Environmental Protection Agency. “Guidelines for Exposure Assessment”. U.S. Environmental Protection Agency, Risk Assessment Forum, Washington, District of Columbia, Environmental Protection Agency, 600, Z-92, 001, 1992.
  • [28] United States Environmental Protection Agency. “Guidelines for Carcinogen Risk Assessment”. Washington D.C., EPA, 600, P-92, 003C, 1996.
  • [29] Little JC. “Applying the Two-Resistance Theory to Contaminant Volatilization in Showers”. Environmental Science Technology, 26(7), 1341-1349, 1992.
  • [30] Türkiye İstatistik Kurumu. “Nüfus ve Demografi” https://data.tuik.gov.tr/Kategori/GetKategori?p=Nufusve-Demografi-109 (10.02. 2021).
  • [31] Nicholson BC, Magure BP, Bursill DB. “Henry’s law constants for the trihalomethanes: effects of water composition and temperature”. Environmental Science Technology, 18(7), 518-521, 1984
  • [32] Legay C, Rodriguez MJ, Sadiq R, Sérodes JB, Levallois P, Proulx F. “Spatial variations of human health risk associated with exposure to chlorination by-products occurring in drinking water”. Journal of Environmental Management, 92(3), 892-901, 2011.
  • [33] Zhang H, Chang S, Wang L, Wang W. “Estimating and comparing the cancer risks from trihalometans and lowlevel arsenic in drinking water based on disabilityadjusted life years”. Water Research, 145, 83-93, 2018.
  • [34] Lee SC, Guo H, Lam SMJ, Lau SLA. “Multipathway risk assessment on disinfection by-products of drinking water in Hong Kong”. Environmental Research, 94(1), 47-56, 2004.
  • [35] Kim J. “Fate of THMS and HAAs in low TOC surface water”. Environmental Research, 109(2), 158-165, 2009.
  • [36] Kumari M, Gupta SK. “Age dependent adjustment factor (ADAF) for the estimation of cancer risk through trihalomethanes (THMs) for different age groups-a innovative approach”. Ecotoxicology and Environmental Safety, 148, 960-968, 2018.
  • [37] Rodriguez M, Serodes JB. “Spatial and Temporal Evolution of Trihalomethanes in Three Water Distribution Systems”. Water Research, 35(6), 1572-86, 2001.
  • [38] Lebel GL, Benoit FM, Williams DT. “A One-Year Survey of Halogenated Disinfection By-Products in The Distribution System of Treatment Plants Using Three Different Disinfection Processes”. Chemosphere, 34(11), 2301-2317, 1997.
  • [39] Williams DT, Lebel GL, Benoit FM. “Disinfection byproducts in Canadian drinking water”. Chemosphere, 34(2), 299-316, 1997.
  • [40] Rodriguez MJ, Vinette Y, Serodes JB, Bouchard C. “Trihalomethanes in drinking water of greater québec region (Canada): Occurrence, Variations and Modelling”. Environmental Monitoring and Assessment, 89(1), 69-93, 2003.
  • [41] Scheili A, Rodriguez MJ, Sadiq R. “Seasonal and spatial variations of source and drinking water quality in small municipal systems of two Canadian regions”. Science of the Total Environment, 508(1), 514-524, 2015.
  • [42] Golfinopoulos SK, Arhonditsis GB. “Multiple regression models: A methodology for evaluating trihalomethane concentrations in drinking water from raw water characteristics”. Chemosphere, 47(9), 1007-1018, 2002.
  • [43] Golfinopoulos SK, Xilourgidis NK, Kostopoulou MN, Lekkas TD. “Use of a multiple regression model for predicting trihalomethane formation”. Water Research, 32(9), 2821-2829, 1998.
  • [44] Avşar E, Karadağ SG, Toröz İ, Hanedar A. “İstanbul Ömerli ham suyunda dezenfeksiyon amaçlı klor dioksit kullanımının dezenfeksiyon yan ürün (DYÜ) oluşumuna etkisinin araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(3), 297-302, 2017.
  • [45] Rodriguez MJ, Serodes JB, Levallois P. “Behavior of trihalomethanes and haloacetic acids in a drinking water distribution system”. Water Research, 38(20), 4367-4382, 2004.
  • [46] Uyak V, Soylu S, Topal T, Karapinar N, Ozdemir K, Ozaydin S, Avsar E. “Spatial and seasonal variations of disinfection byproducts (DBPs) in drinking water distribution systems of Istanbul City, Turkey”. Environmental Forensics, 15(2), 190-205, 2014.
  • [47] Hsu CH, Jeng WL, Chang RM, Chien LC, Han BC, “Estimation of potential lifetime cancer risks for trihalomethanes from consuming chlorinated drinking water in Taiwan”. Environmental Research, 85(2), 77-82, 2001.
  • [48] Viana RB, Cavalcante RM, Braga FMG, Viana AB, Araujo JC, Nascimento RF, Pimentel AS. “Risk assessment of trihalomethanes from tap water in Fortaleza, Brazil”. Environmental Monitoring and Assessment, 151(1), 317-325, 2009.
  • [49] Weisel CP, Jo WK. “Ingestion, inhalation and dermal exposure to chloroform and trichloroethene from tap water”. Environmental Health Perspectives, 104(1), 48-51, 1996.
  • [50] Lee J, Ha KT, Zoh KD. “Characteristics of trihalomethane (trihalometan) production and associated health risk assessment in swimming pool waters treated with different disinfection methods”. Science of The Total Environment, 407(6), 1990-1997, 2009.

Life-Time cancer risk assessment of carbonaceous disinfection by-products through multiple pathways of exposure in drinking water: Isparta distribution system

Year 2022, Volume: 28 Issue: 6, 901 - 911, 30.11.2022

Abstract

Disinfection by-products (DBPs) are mutagenic and carcinogenic compounds formed as a result of reactions between precursors and disinfectants in water sources. The aim of this study is to monitor the concentration and speciation of trihalomethanes (THMs) and haloacetic acids (HAAs) and in water samples taken monthly from 5 points of the Isparta water distribution system for 1 year. Also, the lifetime cancer risk of THMs and HAAS through oral ingestion, dermal absorption, and inhalation exposure from tap water in 5 districts in Isparta are estimated. The total concentrations of THMs and HAAs in tap water samples were ranged 24-57 µg/L and 12-36 µg/L, respectively. The estimated total carcinogenic risk levels of THMs for male and female through ingestion, dermal absorption, and inhalation were 8.3E-05 and 8.1E-05, respectively. Among the three pathways studied in THMs exposure, inhalation contributed 62% of the total risk followed by oral exposure (27%) and dermal contact (%11). In the Isparta water distribution system, the total cancer risk values estimated for THM are 81 times higher for women and 83 times higher for men than the negligible risk value (1E-06) determined by the United States Environmental Protection Agency (USEPA). The estimated total carcinogenic risk levels of THMs for male and female through multipathway were 3.3E-05 and 4.4E-05, respectively. For HAA, the mean total lifetime cancer risk values are 44 times higher for women and 33 times higher for men than the negligible risk value determined by the USEPA.

References

  • [1] Stalter D, O’Malley E, von Gunten U, Escher BI. “Mixture effects of drinking water disinfection by-products: implications for risk assessment”. Environmental Science.: Water Research § Technology, 6(9), 2341-2351, 2020.
  • [2] Fakıoğlu M, Karpuzcu ME, Öztürk İ. “İçme sularında alg kaynaklı tat ve koku sorununun değerlendirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(6), 1141-1156, 2018.
  • [3] Alkhatib E, Peters R. “Wet weather impact on trihalomethane formation potential in tributaries to drinking water reservoirs”. Environmental Monitoring Assessment, 139(1-3), 173-181, 2008.
  • [4] Liu ZQ, Shah AD, Salhi E, Bolotin J, von Gunten U. “Formation of brominated trihalomethanes during chlorination or ozonation of natural organic matter extracts and model compounds in saline water”. Water Research, 143, 492-502, 2018.
  • [5] Andersson A, Ashiq MJ, Shoeb M, Karlsson S, Bastviken D, Kylin H. “Evaluating gas chromatography with a halogenspecific detector for the determination of disinfection byproducts in drinking water”. Environmental Science and Pollution Research, 26(8), 7305-7314, 2018.
  • [6] Kargaki S, Iakovides M, Stephanou EG. “Study of the occurrence and multi-pathway health risk assessment of regulated and unregulated disinfection by-products in drinking and swimming pool waters of Mediterranean cities”. Science of the Total Environment, 739, 1-16, 2020.
  • [7] Blatchley ER, Margetas D, Duggirala R. “Copper catalysis in chloroform formation during water chlorination”. Water Research, 37(18), 4385-4394, 2003.
  • [8] Richardson SD, Ternes TA. “Water analysis: emerging contaminants and current issues”. Analytical Chemistry, 86(6), 2813-2848, 2014.
  • [9] Wang Y, Zhu G, Engel B. “Health risk assessment of trihalomethanes in water treatment plants in Jiangsu Province”. Ecotoxicology and Environmental Safety, 170(2), 346-354, 2009.
  • [10] Matamoros V, Mujeriego R, Bayona JM. “Trihalomethane occurrence in chlorinated reclaimed water at full-scale wastewater treatment plants in NE Spain”. Water Research, 41(15), 3337-3344, 2007.
  • [11] World Health Organization. “Guidelines for DrinkingWater Quality: Fourth Edition Incorporating the First Addendum”. Geneva, Switzerland, Licence, CC BY-NC-SA 3.0 IGO, 2017.
  • [12] Van Veldhoven K, Keski-Rahkonen P, Barupal DK, Villanueva CM, Font-Ribera L, Scalbert A, Bodinier B, Grimalt JO, Zwiener C, Vlaanderen J. “Effects of exposure to water disinfection by-products in a swimming pool: a metabolome-wide association study”. Environmental International, 111, 60-70, 2018.
  • [13] Fakhri Y, Mohseni-Bandpei A, Oliveri Conti G, Keramati H, Zandsalimi Y, Amanidaz N, Hosseini Pouya R, Moradi B, Bahmani Z, Rasouli Amirhajeloo L, Baninameh Z. “Health risk assessment induced by chloroform content of the drinking water in Iran: systematic review”. Toxin Reviewers, 36(4), 342-351, 2017.
  • [14] Mohammadi A, Faraji M, Ebrahimi AA, Nemati S, Abdolahnejad A, Miri M. “Comparing THMs level in old and new water distribution systems; seasonal variation and probabilistic risk assessment”. Ecotoxicology and Environmental Safety, 192, 1-7, 2020.
  • [15] Carter RAA, Joll CA. “Occurrence and formation of disinfection by-products in the swimming pool environment: A critical review”. Journal of Environmental Science (China), 58, 19-50, 2017.
  • [16] Peng F, Peng J, Li H, Li Y, Wang B, Yang Z. “Health risks and predictive modeling of disinfection byproducts in swimming pools”. Environment International, 139, 105726, 2020.
  • [17] Kujlu R, Mahdavianpour M, Ghanbari F. “Multi-route human health risk assessment from trihalomethanes in drinking and non-drinking water in Abadan, Iran”. Environmental Science and Pollution Research, 27, 42621–42630 2020.
  • [18] Xu X, Weisel CP. “Inhalation exposure to haloacetic acids and haloketones during showering”. Environmental Science Technology, 37(3), 569-576, 2003.
  • [19] Pan S, An Wei, Li H, Su M, Zhang J, Yang M. “Cancer risk assessment on trihalomethanes and haloacetic acids indrinking water of China using disability-adjusted life years”. Journal of Hazardous Materials, 280, 288-294, 2014.
  • [20] Tokmak B, Capar G, Dilek FB, Yetis U. “Trihalomethanes and associated potential cancer risks in the water supply in Ankara, Turkey”. Environmental Research, 96(3), 345-352, 2004.
  • [21] Uyak V. “Multi-pathway risk assessment of trihalomethanes exposure in Istanbul drinking water supplies”. Environment International, 32(1), 12-21, 2006.
  • [22] Aslan S, Turkman A. Cancer Risk Assessment in Drinking Water of Izmir, Turkey. Editors: Mothersill C, Mosse I, Seymour C. Multiple Stressors: A Challenge for the Future. NATO Science for Peace and Security Series. 381-389, Frankfurt, Germany, Springer, Dordrecht, 2007.
  • [23] Genisoglu M, Ergi-Kaytmaz C, Sofuoğlu SC. “Multi-RouteMulti-Pathway exposure to trihalomethanes and associated cumulative health risks with response and dose addition”. Journal of Environmental Management, 233, 823-831, 2019.
  • [24] Baytak D, Sofuoğlu A, Inal F, Sofuoglu SC. “Seasonal variation in drinking water concentrations of disinfection by-products in Izmir and associated human health risks”. Science of Total Environment, 407(1), 286-296, 2008.
  • [25] Has M. Sakarya İli Şebeke Suyunda trihalometan Miktarının Belirlenmesi ve Risk Analizi. Yüksek Lisans Tezi, Sakarya Üniversitesi, Sakarya, Türkiye, 2019.
  • [26] Ates N, Kaplan-Bekaroglu SS, Dadaser-Celik F. “Spatial/Temporal distribution and multi-pathway cancer risk assessment of trihalomethanes in low TOC and high bromide groundwater”. Environmental Science: Processes Impacts, 22, 2276-2290, 2020.
  • [27] United States Environmental Protection Agency. “Guidelines for Exposure Assessment”. U.S. Environmental Protection Agency, Risk Assessment Forum, Washington, District of Columbia, Environmental Protection Agency, 600, Z-92, 001, 1992.
  • [28] United States Environmental Protection Agency. “Guidelines for Carcinogen Risk Assessment”. Washington D.C., EPA, 600, P-92, 003C, 1996.
  • [29] Little JC. “Applying the Two-Resistance Theory to Contaminant Volatilization in Showers”. Environmental Science Technology, 26(7), 1341-1349, 1992.
  • [30] Türkiye İstatistik Kurumu. “Nüfus ve Demografi” https://data.tuik.gov.tr/Kategori/GetKategori?p=Nufusve-Demografi-109 (10.02. 2021).
  • [31] Nicholson BC, Magure BP, Bursill DB. “Henry’s law constants for the trihalomethanes: effects of water composition and temperature”. Environmental Science Technology, 18(7), 518-521, 1984
  • [32] Legay C, Rodriguez MJ, Sadiq R, Sérodes JB, Levallois P, Proulx F. “Spatial variations of human health risk associated with exposure to chlorination by-products occurring in drinking water”. Journal of Environmental Management, 92(3), 892-901, 2011.
  • [33] Zhang H, Chang S, Wang L, Wang W. “Estimating and comparing the cancer risks from trihalometans and lowlevel arsenic in drinking water based on disabilityadjusted life years”. Water Research, 145, 83-93, 2018.
  • [34] Lee SC, Guo H, Lam SMJ, Lau SLA. “Multipathway risk assessment on disinfection by-products of drinking water in Hong Kong”. Environmental Research, 94(1), 47-56, 2004.
  • [35] Kim J. “Fate of THMS and HAAs in low TOC surface water”. Environmental Research, 109(2), 158-165, 2009.
  • [36] Kumari M, Gupta SK. “Age dependent adjustment factor (ADAF) for the estimation of cancer risk through trihalomethanes (THMs) for different age groups-a innovative approach”. Ecotoxicology and Environmental Safety, 148, 960-968, 2018.
  • [37] Rodriguez M, Serodes JB. “Spatial and Temporal Evolution of Trihalomethanes in Three Water Distribution Systems”. Water Research, 35(6), 1572-86, 2001.
  • [38] Lebel GL, Benoit FM, Williams DT. “A One-Year Survey of Halogenated Disinfection By-Products in The Distribution System of Treatment Plants Using Three Different Disinfection Processes”. Chemosphere, 34(11), 2301-2317, 1997.
  • [39] Williams DT, Lebel GL, Benoit FM. “Disinfection byproducts in Canadian drinking water”. Chemosphere, 34(2), 299-316, 1997.
  • [40] Rodriguez MJ, Vinette Y, Serodes JB, Bouchard C. “Trihalomethanes in drinking water of greater québec region (Canada): Occurrence, Variations and Modelling”. Environmental Monitoring and Assessment, 89(1), 69-93, 2003.
  • [41] Scheili A, Rodriguez MJ, Sadiq R. “Seasonal and spatial variations of source and drinking water quality in small municipal systems of two Canadian regions”. Science of the Total Environment, 508(1), 514-524, 2015.
  • [42] Golfinopoulos SK, Arhonditsis GB. “Multiple regression models: A methodology for evaluating trihalomethane concentrations in drinking water from raw water characteristics”. Chemosphere, 47(9), 1007-1018, 2002.
  • [43] Golfinopoulos SK, Xilourgidis NK, Kostopoulou MN, Lekkas TD. “Use of a multiple regression model for predicting trihalomethane formation”. Water Research, 32(9), 2821-2829, 1998.
  • [44] Avşar E, Karadağ SG, Toröz İ, Hanedar A. “İstanbul Ömerli ham suyunda dezenfeksiyon amaçlı klor dioksit kullanımının dezenfeksiyon yan ürün (DYÜ) oluşumuna etkisinin araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(3), 297-302, 2017.
  • [45] Rodriguez MJ, Serodes JB, Levallois P. “Behavior of trihalomethanes and haloacetic acids in a drinking water distribution system”. Water Research, 38(20), 4367-4382, 2004.
  • [46] Uyak V, Soylu S, Topal T, Karapinar N, Ozdemir K, Ozaydin S, Avsar E. “Spatial and seasonal variations of disinfection byproducts (DBPs) in drinking water distribution systems of Istanbul City, Turkey”. Environmental Forensics, 15(2), 190-205, 2014.
  • [47] Hsu CH, Jeng WL, Chang RM, Chien LC, Han BC, “Estimation of potential lifetime cancer risks for trihalomethanes from consuming chlorinated drinking water in Taiwan”. Environmental Research, 85(2), 77-82, 2001.
  • [48] Viana RB, Cavalcante RM, Braga FMG, Viana AB, Araujo JC, Nascimento RF, Pimentel AS. “Risk assessment of trihalomethanes from tap water in Fortaleza, Brazil”. Environmental Monitoring and Assessment, 151(1), 317-325, 2009.
  • [49] Weisel CP, Jo WK. “Ingestion, inhalation and dermal exposure to chloroform and trichloroethene from tap water”. Environmental Health Perspectives, 104(1), 48-51, 1996.
  • [50] Lee J, Ha KT, Zoh KD. “Characteristics of trihalomethane (trihalometan) production and associated health risk assessment in swimming pool waters treated with different disinfection methods”. Science of The Total Environment, 407(6), 1990-1997, 2009.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section İnşaat Müh. / Çevre Müh. / Jeoloji Müh.
Authors

Cihan Özgür This is me

Bilgehan İlker Harman This is me

Hasan Koseoglu This is me

Sehnaz Sule Kaplan Bekaroglu This is me

Publication Date November 30, 2022
Published in Issue Year 2022 Volume: 28 Issue: 6

Cite

APA Özgür, C., Harman, B. İ., Koseoglu, H., Kaplan Bekaroglu, S. S. (2022). Karbon bazlı dezenfeksiyon yan ürünlerinin çoklu maruziyet yolları için kanser risklerinin değerlendirilmesi: Isparta içme suyu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(6), 901-911.
AMA Özgür C, Harman Bİ, Koseoglu H, Kaplan Bekaroglu SS. Karbon bazlı dezenfeksiyon yan ürünlerinin çoklu maruziyet yolları için kanser risklerinin değerlendirilmesi: Isparta içme suyu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. November 2022;28(6):901-911.
Chicago Özgür, Cihan, Bilgehan İlker Harman, Hasan Koseoglu, and Sehnaz Sule Kaplan Bekaroglu. “Karbon Bazlı Dezenfeksiyon Yan ürünlerinin çoklu Maruziyet Yolları için Kanser Risklerinin değerlendirilmesi: Isparta içme Suyu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, no. 6 (November 2022): 901-11.
EndNote Özgür C, Harman Bİ, Koseoglu H, Kaplan Bekaroglu SS (November 1, 2022) Karbon bazlı dezenfeksiyon yan ürünlerinin çoklu maruziyet yolları için kanser risklerinin değerlendirilmesi: Isparta içme suyu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28 6 901–911.
IEEE C. Özgür, B. İ. Harman, H. Koseoglu, and S. S. Kaplan Bekaroglu, “Karbon bazlı dezenfeksiyon yan ürünlerinin çoklu maruziyet yolları için kanser risklerinin değerlendirilmesi: Isparta içme suyu”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 28, no. 6, pp. 901–911, 2022.
ISNAD Özgür, Cihan et al. “Karbon Bazlı Dezenfeksiyon Yan ürünlerinin çoklu Maruziyet Yolları için Kanser Risklerinin değerlendirilmesi: Isparta içme Suyu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/6 (November 2022), 901-911.
JAMA Özgür C, Harman Bİ, Koseoglu H, Kaplan Bekaroglu SS. Karbon bazlı dezenfeksiyon yan ürünlerinin çoklu maruziyet yolları için kanser risklerinin değerlendirilmesi: Isparta içme suyu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28:901–911.
MLA Özgür, Cihan et al. “Karbon Bazlı Dezenfeksiyon Yan ürünlerinin çoklu Maruziyet Yolları için Kanser Risklerinin değerlendirilmesi: Isparta içme Suyu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 28, no. 6, 2022, pp. 901-1.
Vancouver Özgür C, Harman Bİ, Koseoglu H, Kaplan Bekaroglu SS. Karbon bazlı dezenfeksiyon yan ürünlerinin çoklu maruziyet yolları için kanser risklerinin değerlendirilmesi: Isparta içme suyu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28(6):901-1.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif