Research Article
BibTex RIS Cite

Hibrit FUCOM-Pareto analizi-rastgele orman yöntemi kullanılarak COVID-19 onaylanmış vaka sayısının tahmin edilmesi

Year 2023, Volume: 29 Issue: 1, 45 - 57, 28.02.2023

Abstract

Aralık 2019 tarihinde ortaya çıkan ve halen etkisini devam ettiren COVID-19 salgınının ardından neredeyse tüm ülkeler virüsün yayılmasını kontrol altına almak için katı önlemler uygulamak zorunda kalmıştır. COVID-19’un yayılım hızına etki eden çok sayıda kriter olması ve en etkili kriterlerin belirlenememesi yayılımın, dolayısıyla pozitif vaka ve ölüm sayısının artmasına neden olmaktadır. Uzmanların yayılımı azaltabilmesi yayılımı etkileyen kriterlerin belirlenmesine bağlıdır. Bu nedenle çalışmada; öncelikle yayılım hızına etki eden kriterlere ait ağırlıklar çok kriterli karar verme yöntemi olan tam tutarlılık yöntemi (FUCOM) kullanılarak belirlenmiş, elde edilen kriter ağırlıkları baz alınarak yayılımı en çok etkileyen kriterler Pareto analizi ile tespit edilmiştir. Daha sonra elde edilen kriter baz alınarak Rastgele Orman (RO) yöntemiyle onaylanmış vaka sayıları tahmin edilmiştir. RO yöntemine ait performans kriterleri değerleri; yapay sinir ağı, karar ağacı ve destek vektör makinası gibi farklı yapay zeka yöntemleri ile karşılaştırılmıştır. RO yönteminin; RMSE (3247), MAE (1714) ve RRSE (0.374) hata değerleriyle ve %92.9 gibi yüksek tahmin başarısı ile daha iyi değerler verdiği görülmüştür.

References

  • [1] WHO. “Coronavirus (COVID-19) Dashboard”. https://covid19.who.int/ (23.09.2021).
  • [2] Devaraj J, Elavarasan RM, Pugazhendhi R, Shafiullah GM, Ganesan S, Jeysree AK, Khan IA, Hossain E. “Forecasting of COVID-19 cases using deep learning models: Is it reliable and practically significant?”. Results in Physics, 2021. https://doi.org/10.1016/j.rinp.2021.103817
  • [3] Gumaei A, Al-Rakhami M, Al Rahhal MM, Albogamy FR, Al Maghayreh E, AlSalman, H. “Prediction of COVID-19 confirmed cases using gradient boosting regression method”. Computers, Materials and Continua, 66(1), 315-329, 2021.
  • [4] Singh V, Poonia RC, Kumar S, Dass P, Agarwal P, Bhatnagar V, Raja L. “Prediction of COVID-19 corona virus pandemic based on time series data using Support Vector Machine”. Journal of Discrete Mathematical Sciences and Cryptography, 23(8), 1583-1597, 2020.
  • [5] Hao Y, Xu T, Hu H, Wang P, Bai Y. “Prediction and analysis of corona virus disease 2019”. PloS One, 2020. https://doi. org/10.1371/journal.pone.0239960
  • [6] Singh S, Parmar KS, Makkhan SJS, Kaur J, Peshoria S, Kumar J. “Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARSCoV-2 confirmed cases in the most affected countries”. Chaos, Solitons & Fractals, 2020. https://doi.org/10.1016/j.chaos.2020.110086
  • [7] Shahid F, Zameer A, Muneeb M. “Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM”. Chaos, Solitons & Fractals, 2020. https://doi.org/10.1016/j.chaos.2020.110212
  • [8] Rustam F, Reshi AA, Mehmood A, Ullah S, On BW, Aslam W, Choi GS. “COVID-19 future forecasting using supervised machine learning models”. IEEE Access, 8, 101489-101499, 2020.
  • [9] Unlu R, Namli E. “Machine learning and classical forecasting methods based decision support systems for COVID-19. ”CMC-Computers Materials & Continua, 64(3), 1383-1399, 2020.
  • [10] Masum AKM, Khushbu SA, Keya M, Abujar S, Hossain SA. “COVID-19 in Bangladesh: A Deeper Outlook into The Forecast with Prediction of Upcoming Per Day Cases Using Time Series”. Procedia Computer Science, 178, 291-300, 2020.
  • [11] Almazroi AA, Usmani RSA. “COVID-19 cases prediction in saudi arabia using tree-based ensemble models”. Intelligent Automation and Soft Computing, 32(1), 389-400, 2022.
  • [12] Gupta S, Raghuwanshi GS, Chanda A. “Effect of weather on COVID-19 spread in the US: A prediction model for India in 2020”. Science of the Total Environment, 2020. https://doi.org/10.1016/j.scitotenv.2020.138860
  • [13] Behnood A, Golafshani EM, Hosseini SM. “Determinants of the infection rate of the COVID-19 in the U.S. using ANFIS and virus optimization algorithm (VOA)”. Chaos Solitons and Fractals, 2020. https://doi.org/10.1016/j.chaos.2020.110051
  • [14] Ahmadi M, Sharifi A, Dorosti S, Ghoushchi SJ, Ghanbari N. “Investigation of effective climatology parameters on COVID-19 outbreak in Iran”. Science of the Total Environment, 2020. https://doi.org/10.1016/j.scitotenv.2020.138705
  • [15] Goswami K, Bharali S, Hazarika J. “Projections for COVID19 pandemic in India and effect of temperature and humidity”. Diabetes and Metabolic Syndrome Clinical Research and Reviews, 14(5), 801-805, 2020.
  • [16] Al-Rousan N, Al-Najjar H. “The correlation between the spread of COVID-19 infections and weather variables in 30 Chinese provinces and the impact of Chinese government mitigation plans”. European Review for Medical and Pharmacological Sciences, 24(8), 4565-4571, 2020.
  • [17] Ahmad F, Almuayqil SN, Mamoona H, Shahid N, Wasim Ahmad K, Kashaf J. “Prediction of COVID-19 cases using machine learning for effective public health management”. Computers, Materials, & Continua, 66(3), 2265-2282, 2021.
  • [18] Kumar A, Rani P, Kumar R, Sharma V, Purohit SR. “Datadriven modelling and prediction of COVID-19 infection in India and correlation analysis of the virus transmission with socio-economic factors”. Diabetes & Metabolic Syndrome, 14(5), 1231-1240, 2020.
  • [19] Pamucar D, Ecer F, Deveci M. “Assessment of alternative fuel vehicles for sustainable road transportation of United States using integrated fuzzy FUCOM and neutrosophic fuzzy MARCOS methodology”. Science of The Total Environment, 2021. https://doi.org/10.1016/j.scitotenv.2021.147763
  • [20] Nuni´c ZB. “Evaluation and selection of Manufacturer PVC carpentry using FUCOM-MABAC model”. Operational Research in Engineering Sciences: Theory and Applications, 1(1), 13-28, 2018.
  • [21] Zavadskas EK, Nuni´c Z, Stjepanovi´c Ž, Prentkovskis O. “A novel rough range of value method (R-ROV) for selecting automatically guided vehicles (AGVs)”. Studies in Informatics and Control, 27(4), 385-394, 2018.
  • [22] Pamucar D, Lukovac V, Božani´c D, Komazec N. “Multi-criteria FUCOM-MAIRCA model for the evaluation of level crossings: case study in the Republic of Serbia”. Operational Research in Engineering Sciences: Theory and Applications, 1, 108-129, 2018.
  • [23] Prentkovskis O, Erceg Ž, Stevi´c Ž, Tanackov I, Vasiljevi´c M, Gavranovi´c M. “A new methodology for ımproving service quality measurement: delphi-FUCOM-SERVQUAL model”. Symmetry, 10(12), 757-782, 2018.
  • [24] Breiman, L. “Random forests”. Machine Learning, 45(1), 5-32, 2001.
  • [25] Tekin MC, Tunalı V. “Yazılım geliştirme taleplerinin metin madenciliği yöntemleriyle önceliklendirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(5), 615-620, 2019.
  • [26] Sağbaş EA, Ballı S. “Akıllı telefon algılayıcıları ve makine öğrenmesi kullanılarak ulaşım türü tespiti”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(5), 376-383, 2016.
  • [27] Pal M. “Random forest classifier for remote sensing classification”. International Journal Of Remote Sensing, 26(1), 217-222, 2005.
  • [28] Our World in Data. “Coronavirus Pandemic (COVID-19)”. https://ourworldindata.org/coronavirus (01.10.2021).
  • [29] Our World in Data. “Coronavirus (COVID-19) Testing”. https://ourworldindata.org/coronavirus-testing (01.10.2021).
  • [30] Wikipedia. “List of Countries by Age Structure”. https://en.wikipedia.org/wiki/List_of_countries_by_age_ structure (05.10.2021).
  • [31] Wikipedia. “List of Countries by Total Health Expenditure Per Capita”. https://en.wikipedia.org/wiki/List_of_countries_by_total _health_expenditure_per_capita (05.10.2021).
  • [32] Wikipedia. “Gross National Income”. https://en.wikipedia.org/wiki/Gross_national_income (05.10.2021).
  • [33] Wikipedia. “List of Countries by Hospital Beds”. https://en.wikipedia.org/wiki/List_of_countries_by_hos pital_beds (05.10.2021).
  • [34] Wikipedia. “List of Countries and Dependencies by Population Density”. https://en.wikipedia.org/wiki/List_of_countries_and_de pendencies_by_population_density (05.10.2021).
  • [35] COVID-19 Community Mobility Reports. “CSV documentation”. https://www.google.com/covid19/mobility (10.10.2021).
  • [36] OECD. “World Health Organization's Global Health Workforce Statistics”. https://data.worldbank.org/indicator/SH.MED.PHYS.ZS (01.10.2021).
  • [37] World Tourism Organization. “Yearbook of Tourism Statistics, Compendium of Tourism Statistics and data files”. https://data.worldbank.org/indicator/ST.INT.ARVL (01.10.2021).
  • [38] Nuclear Threat Initiative, John Hopkins Bloomberg School of Public Health. “Global Health Security Index 2019”. https://www.ghsindex.org (12.11.2021).
  • [39] COVID-19 Map-Johns Hopkins Coronavirus Resource Center. “Global Map”. https://coronavirus.jhu.edu/map.html (10.11.2021).
  • [40] Data Center. “Human Development Reports”. http://hdr.undp.org/en/data (10.11.2021).
  • [41] Dünya Sağlık Örgütü, World Health Organization. “COVID19 Weekly Epidemiological Update, 15 June 2021”. https://www.who.int/publications/m (12.11.2021).

Prediction of the number of COVID-19 confirmed cases using the hybrid FUCOM-Pareto analysis- random forest method

Year 2023, Volume: 29 Issue: 1, 45 - 57, 28.02.2023

Abstract

After the COVID-19 epidemic, which emerged in December 2019 and is still in effect, almost all countries had to implement strict measures to control the spread of the virus. The ability of experts to reduce the spread primarily depends on the determination of the criteria affecting the spread. The fact many criteria that affect the rate of spread of COVID-19 and the most effective criteria cannot be determined, causes the spread, and therefore the number of positive cases and deaths to increase. Therefore, in the study; firstly, the weights of the criteria affecting the rate of spread were determined by using the full consistency method (FUCOM), which is a multi-criteria decision-making method, and the criteria that most affected the spread were determined by Pareto analysis, based on the criteria weights obtained. Then, based on the criteria obtained, the number of confirmed cases was predicted using the random forest method. The performance criteria values of the random forest were compared with different artificial intelligence methods such as artificial neural network, decision tree and support vector machine. Random forest gave the best results with error values (RMSE (3247), MAE (1714) and RRSE (0.374)). In addition, the random forest achieved a high prediction success of 92.9%.

References

  • [1] WHO. “Coronavirus (COVID-19) Dashboard”. https://covid19.who.int/ (23.09.2021).
  • [2] Devaraj J, Elavarasan RM, Pugazhendhi R, Shafiullah GM, Ganesan S, Jeysree AK, Khan IA, Hossain E. “Forecasting of COVID-19 cases using deep learning models: Is it reliable and practically significant?”. Results in Physics, 2021. https://doi.org/10.1016/j.rinp.2021.103817
  • [3] Gumaei A, Al-Rakhami M, Al Rahhal MM, Albogamy FR, Al Maghayreh E, AlSalman, H. “Prediction of COVID-19 confirmed cases using gradient boosting regression method”. Computers, Materials and Continua, 66(1), 315-329, 2021.
  • [4] Singh V, Poonia RC, Kumar S, Dass P, Agarwal P, Bhatnagar V, Raja L. “Prediction of COVID-19 corona virus pandemic based on time series data using Support Vector Machine”. Journal of Discrete Mathematical Sciences and Cryptography, 23(8), 1583-1597, 2020.
  • [5] Hao Y, Xu T, Hu H, Wang P, Bai Y. “Prediction and analysis of corona virus disease 2019”. PloS One, 2020. https://doi. org/10.1371/journal.pone.0239960
  • [6] Singh S, Parmar KS, Makkhan SJS, Kaur J, Peshoria S, Kumar J. “Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARSCoV-2 confirmed cases in the most affected countries”. Chaos, Solitons & Fractals, 2020. https://doi.org/10.1016/j.chaos.2020.110086
  • [7] Shahid F, Zameer A, Muneeb M. “Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM”. Chaos, Solitons & Fractals, 2020. https://doi.org/10.1016/j.chaos.2020.110212
  • [8] Rustam F, Reshi AA, Mehmood A, Ullah S, On BW, Aslam W, Choi GS. “COVID-19 future forecasting using supervised machine learning models”. IEEE Access, 8, 101489-101499, 2020.
  • [9] Unlu R, Namli E. “Machine learning and classical forecasting methods based decision support systems for COVID-19. ”CMC-Computers Materials & Continua, 64(3), 1383-1399, 2020.
  • [10] Masum AKM, Khushbu SA, Keya M, Abujar S, Hossain SA. “COVID-19 in Bangladesh: A Deeper Outlook into The Forecast with Prediction of Upcoming Per Day Cases Using Time Series”. Procedia Computer Science, 178, 291-300, 2020.
  • [11] Almazroi AA, Usmani RSA. “COVID-19 cases prediction in saudi arabia using tree-based ensemble models”. Intelligent Automation and Soft Computing, 32(1), 389-400, 2022.
  • [12] Gupta S, Raghuwanshi GS, Chanda A. “Effect of weather on COVID-19 spread in the US: A prediction model for India in 2020”. Science of the Total Environment, 2020. https://doi.org/10.1016/j.scitotenv.2020.138860
  • [13] Behnood A, Golafshani EM, Hosseini SM. “Determinants of the infection rate of the COVID-19 in the U.S. using ANFIS and virus optimization algorithm (VOA)”. Chaos Solitons and Fractals, 2020. https://doi.org/10.1016/j.chaos.2020.110051
  • [14] Ahmadi M, Sharifi A, Dorosti S, Ghoushchi SJ, Ghanbari N. “Investigation of effective climatology parameters on COVID-19 outbreak in Iran”. Science of the Total Environment, 2020. https://doi.org/10.1016/j.scitotenv.2020.138705
  • [15] Goswami K, Bharali S, Hazarika J. “Projections for COVID19 pandemic in India and effect of temperature and humidity”. Diabetes and Metabolic Syndrome Clinical Research and Reviews, 14(5), 801-805, 2020.
  • [16] Al-Rousan N, Al-Najjar H. “The correlation between the spread of COVID-19 infections and weather variables in 30 Chinese provinces and the impact of Chinese government mitigation plans”. European Review for Medical and Pharmacological Sciences, 24(8), 4565-4571, 2020.
  • [17] Ahmad F, Almuayqil SN, Mamoona H, Shahid N, Wasim Ahmad K, Kashaf J. “Prediction of COVID-19 cases using machine learning for effective public health management”. Computers, Materials, & Continua, 66(3), 2265-2282, 2021.
  • [18] Kumar A, Rani P, Kumar R, Sharma V, Purohit SR. “Datadriven modelling and prediction of COVID-19 infection in India and correlation analysis of the virus transmission with socio-economic factors”. Diabetes & Metabolic Syndrome, 14(5), 1231-1240, 2020.
  • [19] Pamucar D, Ecer F, Deveci M. “Assessment of alternative fuel vehicles for sustainable road transportation of United States using integrated fuzzy FUCOM and neutrosophic fuzzy MARCOS methodology”. Science of The Total Environment, 2021. https://doi.org/10.1016/j.scitotenv.2021.147763
  • [20] Nuni´c ZB. “Evaluation and selection of Manufacturer PVC carpentry using FUCOM-MABAC model”. Operational Research in Engineering Sciences: Theory and Applications, 1(1), 13-28, 2018.
  • [21] Zavadskas EK, Nuni´c Z, Stjepanovi´c Ž, Prentkovskis O. “A novel rough range of value method (R-ROV) for selecting automatically guided vehicles (AGVs)”. Studies in Informatics and Control, 27(4), 385-394, 2018.
  • [22] Pamucar D, Lukovac V, Božani´c D, Komazec N. “Multi-criteria FUCOM-MAIRCA model for the evaluation of level crossings: case study in the Republic of Serbia”. Operational Research in Engineering Sciences: Theory and Applications, 1, 108-129, 2018.
  • [23] Prentkovskis O, Erceg Ž, Stevi´c Ž, Tanackov I, Vasiljevi´c M, Gavranovi´c M. “A new methodology for ımproving service quality measurement: delphi-FUCOM-SERVQUAL model”. Symmetry, 10(12), 757-782, 2018.
  • [24] Breiman, L. “Random forests”. Machine Learning, 45(1), 5-32, 2001.
  • [25] Tekin MC, Tunalı V. “Yazılım geliştirme taleplerinin metin madenciliği yöntemleriyle önceliklendirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(5), 615-620, 2019.
  • [26] Sağbaş EA, Ballı S. “Akıllı telefon algılayıcıları ve makine öğrenmesi kullanılarak ulaşım türü tespiti”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(5), 376-383, 2016.
  • [27] Pal M. “Random forest classifier for remote sensing classification”. International Journal Of Remote Sensing, 26(1), 217-222, 2005.
  • [28] Our World in Data. “Coronavirus Pandemic (COVID-19)”. https://ourworldindata.org/coronavirus (01.10.2021).
  • [29] Our World in Data. “Coronavirus (COVID-19) Testing”. https://ourworldindata.org/coronavirus-testing (01.10.2021).
  • [30] Wikipedia. “List of Countries by Age Structure”. https://en.wikipedia.org/wiki/List_of_countries_by_age_ structure (05.10.2021).
  • [31] Wikipedia. “List of Countries by Total Health Expenditure Per Capita”. https://en.wikipedia.org/wiki/List_of_countries_by_total _health_expenditure_per_capita (05.10.2021).
  • [32] Wikipedia. “Gross National Income”. https://en.wikipedia.org/wiki/Gross_national_income (05.10.2021).
  • [33] Wikipedia. “List of Countries by Hospital Beds”. https://en.wikipedia.org/wiki/List_of_countries_by_hos pital_beds (05.10.2021).
  • [34] Wikipedia. “List of Countries and Dependencies by Population Density”. https://en.wikipedia.org/wiki/List_of_countries_and_de pendencies_by_population_density (05.10.2021).
  • [35] COVID-19 Community Mobility Reports. “CSV documentation”. https://www.google.com/covid19/mobility (10.10.2021).
  • [36] OECD. “World Health Organization's Global Health Workforce Statistics”. https://data.worldbank.org/indicator/SH.MED.PHYS.ZS (01.10.2021).
  • [37] World Tourism Organization. “Yearbook of Tourism Statistics, Compendium of Tourism Statistics and data files”. https://data.worldbank.org/indicator/ST.INT.ARVL (01.10.2021).
  • [38] Nuclear Threat Initiative, John Hopkins Bloomberg School of Public Health. “Global Health Security Index 2019”. https://www.ghsindex.org (12.11.2021).
  • [39] COVID-19 Map-Johns Hopkins Coronavirus Resource Center. “Global Map”. https://coronavirus.jhu.edu/map.html (10.11.2021).
  • [40] Data Center. “Human Development Reports”. http://hdr.undp.org/en/data (10.11.2021).
  • [41] Dünya Sağlık Örgütü, World Health Organization. “COVID19 Weekly Epidemiological Update, 15 June 2021”. https://www.who.int/publications/m (12.11.2021).
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Seda Hatice Gökler This is me

Publication Date February 28, 2023
Published in Issue Year 2023 Volume: 29 Issue: 1

Cite

APA Gökler, S. H. (2023). Hibrit FUCOM-Pareto analizi-rastgele orman yöntemi kullanılarak COVID-19 onaylanmış vaka sayısının tahmin edilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(1), 45-57.
AMA Gökler SH. Hibrit FUCOM-Pareto analizi-rastgele orman yöntemi kullanılarak COVID-19 onaylanmış vaka sayısının tahmin edilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. February 2023;29(1):45-57.
Chicago Gökler, Seda Hatice. “Hibrit FUCOM-Pareto Analizi-Rastgele Orman yöntemi kullanılarak COVID-19 onaylanmış Vaka sayısının Tahmin Edilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29, no. 1 (February 2023): 45-57.
EndNote Gökler SH (February 1, 2023) Hibrit FUCOM-Pareto analizi-rastgele orman yöntemi kullanılarak COVID-19 onaylanmış vaka sayısının tahmin edilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29 1 45–57.
IEEE S. H. Gökler, “Hibrit FUCOM-Pareto analizi-rastgele orman yöntemi kullanılarak COVID-19 onaylanmış vaka sayısının tahmin edilmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29, no. 1, pp. 45–57, 2023.
ISNAD Gökler, Seda Hatice. “Hibrit FUCOM-Pareto Analizi-Rastgele Orman yöntemi kullanılarak COVID-19 onaylanmış Vaka sayısının Tahmin Edilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29/1 (February 2023), 45-57.
JAMA Gökler SH. Hibrit FUCOM-Pareto analizi-rastgele orman yöntemi kullanılarak COVID-19 onaylanmış vaka sayısının tahmin edilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29:45–57.
MLA Gökler, Seda Hatice. “Hibrit FUCOM-Pareto Analizi-Rastgele Orman yöntemi kullanılarak COVID-19 onaylanmış Vaka sayısının Tahmin Edilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29, no. 1, 2023, pp. 45-57.
Vancouver Gökler SH. Hibrit FUCOM-Pareto analizi-rastgele orman yöntemi kullanılarak COVID-19 onaylanmış vaka sayısının tahmin edilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29(1):45-57.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.