Research Article
BibTex RIS Cite

Membranlı boru tipi sıvı desikant nem alma sisteminin tasarımı ve deneysel olarak incelenmesi

Year 2023, Volume: 29 Issue: 4, 303 - 313, 31.08.2023

Abstract

Bu çalışmada, membranlı boru tipi sıvı desikant nem alma sisteminin tasarımı yapılmış ve sistemin nem alma performansı incelenmiştir. İmal edilen sistemde suni sosis kılıfı ve Tyvek® Solid olmak üzere iki farklı membran kullanılmış ve bu iki membran ile deneyler yapılmıştır. Yapılan deneylerde havanın Reynolds (Re) sayısı değiştirilerek hava hızının sistemin performansına etkisi araştırılmıştır. Ayrıca deneyler yapılırken ısıl kamera ile membrandan görüntü alınarak membrandaki sıcaklık değişimi gözlenmiştir. Elde edilen deneysel verilere göre sistemin nem alma verimi, suni kılıf için 200 Re sayısında %4.5-6 aralığında, Tyvek® Solid için yine 200 Re sayısında yaklaşık %18.5 olarak hesaplanmıştır.

References

  • [1] Ahmed YS, Gandhidasan P, Al-Farayedhi AA. “Thermodynamic analysis of liquid desiccants”. Solar Energy, 62, 11-18, 1998.
  • [2] Isetti C, Nannei E, Magrini A. “On the application of a membrane air-liquid contactor for air deh
  • [3] Min J, Su M. “Performance analysis of a membrane-based enthalpy exchanger: Effects of the membrane properties on the exchanger performance”. Journal of Membrane Science, 348, 376-382, 2010.
  • [4] Zhang LZ, Huang SM, Pei LX. “Conjugate heat and mass transfer in a cross-flow hollow fiber membrane contactor for liquid desiccant air dehumidification”. International Journal of Heat and Mass Transfer, 55, 8061-8072, 2012.
  • [5] Huang S, Zhang L, Tang K, Pei L. “Fluid flow and heat mass transfer in membrane parallel-plates channels used for liquid desiccant air dehumidification”. International Journal of Heat and Mass Transfer, 55, 2571-2580, 2012.
  • [6] Huang SM, Yang M. “Longitudinal fluid flow and heat transfer between an elliptical hollow fiber membrane tube bank used for air humidification”. Applied Energy, 112, 75-82, 2013.
  • [7] Huang SM, Qin FGF, Yang M, Yang X, Zhong WF. “Heat and mass transfer deteriorations in an elliptical hollow fiber membrane tube bank for liquid desiccant air dehumidification”. Applied Thermal Engineering, 57, 90-98, 2013.
  • [8] Huang SM, Zhang LZ, Pei LX. “Transport phenomena in a cross-flow hollow fibre membrane bundle used for liquid desiccant air dehumidification”. Indoor and Built Environment, 22, 559-574, 2013.
  • [9] Abdel-Salam AH, Ge G, Simonson CJ. “Performance analysis of a membrane liquid desiccant air-conditioning system”. Energy and Buildings, 62, 559-569, 2013.
  • [10] Abdel-Salam AH, Ge G, Simonson CJ. “Thermo-economic performance of a solar membrane liquid desiccant air conditioning system”. Solar Energy, 102, 56-73, 2014.
  • [11] Abdel-Salam AH, A novel liquid desiccant air conditioning system with membrane exchangers and various heat sources. PhD Thesis, University of Saskatchewan, Ontario, Canada, 2015.
  • [12] Das RS, Jain S. “Experimental performance of indirect airliquid membrane contactors for liquid desiccant cooling systems”. Energy, 57, 319-325, 2013.
  • [13] Keniar K, Ghali K, Ghaddar N. “Study of solar regenerated membrane desiccant system to control humidity and decrease energy consumption in office spaces”. Applied Energy, 138, 121-132, 2015.
  • [14] Namwar R, Ge G, Simonson CJ, Besant RW. “Transient heat and moisture transfer characteristics of a liquid-to-air membrane energy exchanger (LAMEE) model verification and extrapolation”. International Journal of Heat and Mass Transfer, 66, 757-771, 2013.
  • [15] Bai H, Zhu J, Chen Z, Chu J. “Parametric analysis of a crossflow membrane-based parallel-plate liquid desiccant dehumidification system: Numerical and experimental data”. Energy and Buildings, 158, 494-508, 2018.
  • [16] Cihan E, Kavasoğulları B, Demir H. “Mass transfer correlation for tubular membrane-based liquid desiccant air-conditioning system”. Arabian Journal for Science and Engineering, 45, 519-529, 2020.
  • [17] Englart S, Rajski K. “Performance investigation of a hollow fiber membrane-based desiccant liquid air dehumidification system”. Energies, 2021. https://doi.org/10.3390/en14113320
  • [18] Wang Y, Ruhani B, Fazilati MA, Sajadi SM, Alizadeh A, Toghraie D. “Experimental analysis of hollow fiber membrane dehumidifier system with SiO2/CaCl2 aqueous desiccant solution”. Energy Reports, 7, 2821-2835, 2021.
  • [19] Cho H, Cheon S, Jeong J. “Energy impact of vacuum-based membrane dehumidification in building air-conditioning applications”. Applied Thermal Engineering, 2021. https://doi.org/10.1016/j.applthermaleng.2020.116094
  • [20] Li C, Yang T, Jhang J, Li W, Yan W. “Physical characteristics analysis and performance comparison of membranes for vacuum membrane dehumidifiers”. Case Studies in Thermal Engineering, 2021. https://doi.org/10.1016/j.csite.2021.101213
  • [21] Bui DT, Vivekh P, Islam MR, Chua KJ. “Studying the characteristics and energy performance of a composite hollow membrane for air dehumidification”. Applied Energy, 2022. https://doi.org/10.1016/j.apenergy.2021.118161
  • [22] Vaisala. “Humidity and Temperature Transmitters”. https://www.vaisala.com/en/products/instrumentssensors-and-other-measurement-devices/instrumentsindustrial-measurements/hmt120-130 (19.04.2022).
  • [23] Sauermann. “Kimo Instruments”. https://sauermanngroup.com/en-GB/measuringinstruments/transmitters/air-velocity-transmitters/ctv210-r (19.04.2022).
  • [24] Thermometrics-Presicion Temperature Sensors. “Type K Thermocouple”. https://www.thermometricscorp.com/thertypk.html (19.04.2022).
  • [25] Çağdaş Otomasyon. “Sıcaklık ve Nem Ölçerler”. http://www.cagdasltd.com.tr/images/uploads/0226312 001337421066.PDF (19.04.2022).
  • [26] Rudolph Research Analytical. “Density Meter DDM 2910”. https://rudolphresearch.com/tr/products/densitymeters/ddm-2910/ (19.04.2022).
  • [27] Yıldız Gıda A.Ş. https://www.yildiz-as.com/urun-plastIksunI-kilif-1613.html. (19.04.2022).
  • [28] Dupont. “Tyvek® Nefes Alan Su Yalıtım Örtüsü Çözümleri”. https://www.dupont.com.tr/urunler-vehizmetler/construction-materials/tyvek-buildingenvelope/brands/tyvek-breathermembrane/products/tyvek-solid.html. (19.04.2022).
  • [29] Rosen A. “Transport Phenomena I”. Tutfs: Wordpress Blogs and Websites, 2013.
  • [30] Poling BE, Prausnitz JM, O’Connell JP. The properties of gases and liquids. 5th ed. New York, USA, McGraw-Hill, 2001.
  • [31] Conde MR. “Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design”. International Journal of Thermal Sciences, 43, 367-382, 2004.
  • [32] Abdel-Salam AH, Besant RW, Simonson CJ. “Performance Definitions for Three-Fluid Heat and Moisture Exchangers”. ASME Journal of Heat Transfer, 2017. https://doi.org/10.1115/1.4034756
  • [33] Cihan E, Kavasoğulları B, Demir H. “Enhancement of performance of open liquid desiccant system with surface additive”. Renewable Energy, 114, 1101-1112, 2017.
  • [34] Gandhidasan P. “A simplified model for air dehumidification with liquid desiccant”. Solar Energy, 76, 409-416, 2004.
  • [35] Zhang N, Zhang LZ, Xu JC. “A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: A transient performance study”. International Journal of Refrigeration, 67, 143-156, 2016.
  • [36] Abdel-Salam AH, Besant RW, Simonson CJ. “Sensitivity of the performance of a flat-plate liquid-to-air membrane energy exchanger (LAMEE) to the air and solution channel widths and flow maldistribution”. International Journal of Heat and Mass Transfer, 84, 1082-1100, 2015.
  • [37] Bai H, Zhu J, Chen Z, Ma L, Wang R, Li T. “Performance testing of a cross-flow membrane-based liquid desiccant dehumidification system”. Applied Thermal Engineering, 119, 119-131, 2017.
  • [38] Das RS, Jain S. “Performance characteristics of cross-flow membrane contactors for liquid desiccant systems”. Applied Energy, 141, 1-11, 2015.

The design and experimental investigation of membrane-based tubular liquid desiccant dehumidification system

Year 2023, Volume: 29 Issue: 4, 303 - 313, 31.08.2023

Abstract

In this paper, membrane-based tubular liquid desiccant dehumidification system was designed, and its dehumidification performance was investigated. In the manufactured system, two different membranes, synthetic sausage casing and Tyvek® Solid were used. The air Reynolds number (Re) was varied during the experiments to investigate effect of air velocity on the system performance. In addition, temperature changes in the membrane were observed by images taken with thermal camera. According to the experimental data obtained, the dehumidification efficiency of the system was calculated in between 4.5-6% at 200 Re number for synthetic sausage casing and approximately 18.5% at the same Re number for Tyvek® Solid.

References

  • [1] Ahmed YS, Gandhidasan P, Al-Farayedhi AA. “Thermodynamic analysis of liquid desiccants”. Solar Energy, 62, 11-18, 1998.
  • [2] Isetti C, Nannei E, Magrini A. “On the application of a membrane air-liquid contactor for air deh
  • [3] Min J, Su M. “Performance analysis of a membrane-based enthalpy exchanger: Effects of the membrane properties on the exchanger performance”. Journal of Membrane Science, 348, 376-382, 2010.
  • [4] Zhang LZ, Huang SM, Pei LX. “Conjugate heat and mass transfer in a cross-flow hollow fiber membrane contactor for liquid desiccant air dehumidification”. International Journal of Heat and Mass Transfer, 55, 8061-8072, 2012.
  • [5] Huang S, Zhang L, Tang K, Pei L. “Fluid flow and heat mass transfer in membrane parallel-plates channels used for liquid desiccant air dehumidification”. International Journal of Heat and Mass Transfer, 55, 2571-2580, 2012.
  • [6] Huang SM, Yang M. “Longitudinal fluid flow and heat transfer between an elliptical hollow fiber membrane tube bank used for air humidification”. Applied Energy, 112, 75-82, 2013.
  • [7] Huang SM, Qin FGF, Yang M, Yang X, Zhong WF. “Heat and mass transfer deteriorations in an elliptical hollow fiber membrane tube bank for liquid desiccant air dehumidification”. Applied Thermal Engineering, 57, 90-98, 2013.
  • [8] Huang SM, Zhang LZ, Pei LX. “Transport phenomena in a cross-flow hollow fibre membrane bundle used for liquid desiccant air dehumidification”. Indoor and Built Environment, 22, 559-574, 2013.
  • [9] Abdel-Salam AH, Ge G, Simonson CJ. “Performance analysis of a membrane liquid desiccant air-conditioning system”. Energy and Buildings, 62, 559-569, 2013.
  • [10] Abdel-Salam AH, Ge G, Simonson CJ. “Thermo-economic performance of a solar membrane liquid desiccant air conditioning system”. Solar Energy, 102, 56-73, 2014.
  • [11] Abdel-Salam AH, A novel liquid desiccant air conditioning system with membrane exchangers and various heat sources. PhD Thesis, University of Saskatchewan, Ontario, Canada, 2015.
  • [12] Das RS, Jain S. “Experimental performance of indirect airliquid membrane contactors for liquid desiccant cooling systems”. Energy, 57, 319-325, 2013.
  • [13] Keniar K, Ghali K, Ghaddar N. “Study of solar regenerated membrane desiccant system to control humidity and decrease energy consumption in office spaces”. Applied Energy, 138, 121-132, 2015.
  • [14] Namwar R, Ge G, Simonson CJ, Besant RW. “Transient heat and moisture transfer characteristics of a liquid-to-air membrane energy exchanger (LAMEE) model verification and extrapolation”. International Journal of Heat and Mass Transfer, 66, 757-771, 2013.
  • [15] Bai H, Zhu J, Chen Z, Chu J. “Parametric analysis of a crossflow membrane-based parallel-plate liquid desiccant dehumidification system: Numerical and experimental data”. Energy and Buildings, 158, 494-508, 2018.
  • [16] Cihan E, Kavasoğulları B, Demir H. “Mass transfer correlation for tubular membrane-based liquid desiccant air-conditioning system”. Arabian Journal for Science and Engineering, 45, 519-529, 2020.
  • [17] Englart S, Rajski K. “Performance investigation of a hollow fiber membrane-based desiccant liquid air dehumidification system”. Energies, 2021. https://doi.org/10.3390/en14113320
  • [18] Wang Y, Ruhani B, Fazilati MA, Sajadi SM, Alizadeh A, Toghraie D. “Experimental analysis of hollow fiber membrane dehumidifier system with SiO2/CaCl2 aqueous desiccant solution”. Energy Reports, 7, 2821-2835, 2021.
  • [19] Cho H, Cheon S, Jeong J. “Energy impact of vacuum-based membrane dehumidification in building air-conditioning applications”. Applied Thermal Engineering, 2021. https://doi.org/10.1016/j.applthermaleng.2020.116094
  • [20] Li C, Yang T, Jhang J, Li W, Yan W. “Physical characteristics analysis and performance comparison of membranes for vacuum membrane dehumidifiers”. Case Studies in Thermal Engineering, 2021. https://doi.org/10.1016/j.csite.2021.101213
  • [21] Bui DT, Vivekh P, Islam MR, Chua KJ. “Studying the characteristics and energy performance of a composite hollow membrane for air dehumidification”. Applied Energy, 2022. https://doi.org/10.1016/j.apenergy.2021.118161
  • [22] Vaisala. “Humidity and Temperature Transmitters”. https://www.vaisala.com/en/products/instrumentssensors-and-other-measurement-devices/instrumentsindustrial-measurements/hmt120-130 (19.04.2022).
  • [23] Sauermann. “Kimo Instruments”. https://sauermanngroup.com/en-GB/measuringinstruments/transmitters/air-velocity-transmitters/ctv210-r (19.04.2022).
  • [24] Thermometrics-Presicion Temperature Sensors. “Type K Thermocouple”. https://www.thermometricscorp.com/thertypk.html (19.04.2022).
  • [25] Çağdaş Otomasyon. “Sıcaklık ve Nem Ölçerler”. http://www.cagdasltd.com.tr/images/uploads/0226312 001337421066.PDF (19.04.2022).
  • [26] Rudolph Research Analytical. “Density Meter DDM 2910”. https://rudolphresearch.com/tr/products/densitymeters/ddm-2910/ (19.04.2022).
  • [27] Yıldız Gıda A.Ş. https://www.yildiz-as.com/urun-plastIksunI-kilif-1613.html. (19.04.2022).
  • [28] Dupont. “Tyvek® Nefes Alan Su Yalıtım Örtüsü Çözümleri”. https://www.dupont.com.tr/urunler-vehizmetler/construction-materials/tyvek-buildingenvelope/brands/tyvek-breathermembrane/products/tyvek-solid.html. (19.04.2022).
  • [29] Rosen A. “Transport Phenomena I”. Tutfs: Wordpress Blogs and Websites, 2013.
  • [30] Poling BE, Prausnitz JM, O’Connell JP. The properties of gases and liquids. 5th ed. New York, USA, McGraw-Hill, 2001.
  • [31] Conde MR. “Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design”. International Journal of Thermal Sciences, 43, 367-382, 2004.
  • [32] Abdel-Salam AH, Besant RW, Simonson CJ. “Performance Definitions for Three-Fluid Heat and Moisture Exchangers”. ASME Journal of Heat Transfer, 2017. https://doi.org/10.1115/1.4034756
  • [33] Cihan E, Kavasoğulları B, Demir H. “Enhancement of performance of open liquid desiccant system with surface additive”. Renewable Energy, 114, 1101-1112, 2017.
  • [34] Gandhidasan P. “A simplified model for air dehumidification with liquid desiccant”. Solar Energy, 76, 409-416, 2004.
  • [35] Zhang N, Zhang LZ, Xu JC. “A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: A transient performance study”. International Journal of Refrigeration, 67, 143-156, 2016.
  • [36] Abdel-Salam AH, Besant RW, Simonson CJ. “Sensitivity of the performance of a flat-plate liquid-to-air membrane energy exchanger (LAMEE) to the air and solution channel widths and flow maldistribution”. International Journal of Heat and Mass Transfer, 84, 1082-1100, 2015.
  • [37] Bai H, Zhu J, Chen Z, Ma L, Wang R, Li T. “Performance testing of a cross-flow membrane-based liquid desiccant dehumidification system”. Applied Thermal Engineering, 119, 119-131, 2017.
  • [38] Das RS, Jain S. “Performance characteristics of cross-flow membrane contactors for liquid desiccant systems”. Applied Energy, 141, 1-11, 2015.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Barış Kavasoğulları

Ertuğrul Cihan

Hasan Demir This is me

Publication Date August 31, 2023
Published in Issue Year 2023 Volume: 29 Issue: 4

Cite

APA Kavasoğulları, B., Cihan, E., & Demir, H. (2023). Membranlı boru tipi sıvı desikant nem alma sisteminin tasarımı ve deneysel olarak incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(4), 303-313.
AMA Kavasoğulları B, Cihan E, Demir H. Membranlı boru tipi sıvı desikant nem alma sisteminin tasarımı ve deneysel olarak incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. August 2023;29(4):303-313.
Chicago Kavasoğulları, Barış, Ertuğrul Cihan, and Hasan Demir. “Membranlı Boru Tipi sıvı Desikant Nem Alma Sisteminin tasarımı Ve Deneysel Olarak Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29, no. 4 (August 2023): 303-13.
EndNote Kavasoğulları B, Cihan E, Demir H (August 1, 2023) Membranlı boru tipi sıvı desikant nem alma sisteminin tasarımı ve deneysel olarak incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29 4 303–313.
IEEE B. Kavasoğulları, E. Cihan, and H. Demir, “Membranlı boru tipi sıvı desikant nem alma sisteminin tasarımı ve deneysel olarak incelenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29, no. 4, pp. 303–313, 2023.
ISNAD Kavasoğulları, Barış et al. “Membranlı Boru Tipi sıvı Desikant Nem Alma Sisteminin tasarımı Ve Deneysel Olarak Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29/4 (August 2023), 303-313.
JAMA Kavasoğulları B, Cihan E, Demir H. Membranlı boru tipi sıvı desikant nem alma sisteminin tasarımı ve deneysel olarak incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29:303–313.
MLA Kavasoğulları, Barış et al. “Membranlı Boru Tipi sıvı Desikant Nem Alma Sisteminin tasarımı Ve Deneysel Olarak Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29, no. 4, 2023, pp. 303-1.
Vancouver Kavasoğulları B, Cihan E, Demir H. Membranlı boru tipi sıvı desikant nem alma sisteminin tasarımı ve deneysel olarak incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29(4):303-1.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.